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Abstract

We study experimentation under endogenous network interference. Interference patterns
are mediated by an endogenous graph, where edges can be formed or eliminated as a result of
treatment. We show that conventional estimators are biased in these circumstances, and present
a class of unbiased, consistent and asymptotically normal estimators of total treatment effects
in the presence of such interference. We show via simulation that our estimator outperforms
existing estimators in the literature. Our results apply both to bipartite experimentation, in
which the units of analysis and measurement differ, and the standard network experimentation
case, in which they are the same.

1 Introduction

1.1 Background

In many settings, the fundamental no-interference assumption common in experimental analysis
(Cox 1958; Rubin 1980) is implausible, and there are strong grounds for believing that the treatment
assigned to one unit may affect outcomes of other units. This is especially true when outcomes are
in part determined by peoples’ interactions with each other, as is often the case in public health,
education, voting, social media, and other social domains (Calvó-Armengol et al. 2009; DiMaggio
and Garip 2012; Halloran and Hudgens 2016; Taylor and Eckles 2018). A large literature has arisen
developing the theory of estimation and inference for various causal quantities of interest under
these conditions.

Typically, theoretical and empirical analysis proceeds assuming that the interference structure
is known—that is, the researcher has prior knowledge of the set of units which might be affected
by the treatment of any given unit. This is usually expressed in terms of a known “exposure
mapping” or “effective treatment” function, which determines the level of treatment exposure a
unit receives as a function of the treatment assignment vector to all units, or in terms of a “partial
interference” or “neighborhood interference” assumption, according to which interference takes place
only within groups, where the groups are known ex-ante (Hudgens and Halloran 2008; Tchetgen
and VanderWeele 2012; Manski 2013; Liu and Hudgens 2014; Aronow and Samii 2017; Forastiere
et al. 2022). This is a natural starting point that greatly facilitates the development of treatment
effect estimators and the characterization of their behavior.

In practice, the interference structure is rarely known (Egami 2021; Sävje 2024). Analysts often
rely on past user interactions to construct proxy interference graphs (Aral et al. 2009; Bakshy
et al. 2012; Bond et al. 2012; Coppock et al. 2016; Harshaw et al. 2021; Karrer et al. 2021). These
graphs—such as friendship networks in social media or engagement-based links in marketplaces—are
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typically crude approximations of the true, unobserved interference graph.1 Complicating matters
further, they may themselves be causally affected by the treatment of interest. The analyst is
presented with an uncomfortable choice—either use a graph constructed only on the basis of pre-
treatment data, which may omit relevant information about how treatments affect outcomes, or
incorporate post-treatment data too, which can lead to complex biases in treatment effect estimators.

1.2 Our Contributions

Motivated by this gap between theory and practice, this paper takes a different approach, explicitly
allowing for the observed graph to be determined by treatment assignment. We work in a general
bipartite setting, in which units of analysis and randomization are allowed to differ. We propose the
notion of an endogenous bipartite graph which may be treatment-dependent, and which contains
information on interference from randomization to analysis units. Generalizing the outcome model
of Harshaw et al. (2021) to this setting, we give an unbiased, consistent and asymptotically normal
estimator of the total treatment effect, as well as a consistent testing procedure for the sharp null
of no treatment effect. Our identification and estimation approach relies on a treatment-invariant
“anchor” subgraph, from which instrumental variable estimates of unit-level treatment responses
can be obtained.

Our results apply directly to bipartite experiments, which are of growing interest in their own
right. Units of analysis and randomization may differ because it is not practical or impossible
to measure outcomes of interest at the level at which treatments are being assigned (Zigler and
Papadogeorgou 2021). Alternatively, there may be no conceptual difficulty in defining outcomes at
the randomization unit-level, but accounting for the bipartite structure is a natural way to allow
for cross-unit interference. Causal inference problems with this structure are common in social
networks, recommender systems, digital advertising, and multi-sided platforms broadly (Chawla
et al. (2016); Gilotte et al. (2018); Pouget-Abadie et al. (2019); Harshaw et al. (2021); Nandy et al.
(2021); Johari et al. (2022); Bajari et al. (2023); Shi et al. (2024)).

Our framework extends naturally to the standard unipartite setting, where the units of analysis
and randomization are the same. There, we combine unbiased inverse-propensity weighted estima-
tors of the direct effect, while estimating the indirect effect using the previously developed logic for
bipartite estimators. Unbiasedness, consistency and asymptotic normality follow as corollaries to
our results for bipartite graphs.

1.3 Related Work

Two subareas of network science are especially related to this paper: models of network formation
and estimation of peer effects (see An (2011); Chandrasekhar (2016); Bramoullé et al. (2020) for
overviews). Particularly relevant is an emerging body of work that questions standard assumptions
about interference structure and allows for misspecification of the interference graph (Aronow and
Samii 2017; Eckles et al. 2017; Wang et al. 2020; Leung 2022; Sävje 2024).

Related work also tackles causal inference on unknown graphs (Basse and Airoldi 2018; Chin
2018; Egami 2021; Sävje et al. 2021; Cortez et al. 2022; Yu et al. 2022; Shirani and Bayati 2023; Hal-
loran and Hudgens 2016). Like these papers, we are concerned with the implausibility of correctly
specifying the interference structure. However, we focus on the case of endogenous misspecification:
treatment effects propagate along observed edges, but those edges may themselves depend on treat-
ment assignment realizations. Notable recent exceptions that address this setting include Comola

1For example, social network users frequently interact with “unconnected nodes” by being recommended to join
new groups or follow new users.
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and Prina (2021); Gao (2024); Ryu (2024). Unlike Comola and Prina (2021), we estimate the effect
of treating everyone vs no one, the policy-relevant estimand. Ryu (2024) takes a non-instrumental
variable-based identification approach in the unipartite setting, using conditional means for outcome
and edge formation with parameters assumed to be shared across units. Most closely related is Gao
(2024), which also develops an instrumental variable strategy based on a pre-treatment graph, pro-
ceeding from quite different modeling assumptions (a unipartite graph with undirected, unweighted
edges, and an outcome model with parameters shared across units).

To the best of our knowledge, in addition to providing novel insights into identification and
estimation of treatment effects on endogenous unipartite graphs, these are also the first available
results on treatment effect estimation for endogenous bipartite graphs. Several important questions
remain open, including consistent variance estimation for the total treatment effect estimator.

1.4 Outline of the Paper

The rest of the paper is organized as follows. Section 2 introduces the basic setup for endogenous
bipartite interference graphs and discusses the edge endogeneity bias. Section 3 proposes several
models of endogenous edge formation. Section 4 includes our main estimator, and for which we
demonstrate unbiasedness, consistency and asymptotic normality under certain assumptions. We
also propose a statistical test for the sharp null with asymptotic power equal to 1. Our theory
is supported by simulations in Section 5, where we examine the biases of our estimator and two
exposure reweighted linear estimators (Harshaw et al. 2021), and demonstrate the confidence interval
coverage properties of our estimator based on a variance proxy. Section 6 extends the results to
unipartite graphs, and Section 7 concludes. All proofs and additional details are included in the
Supplementary material.

2 Setup

There are na analysis units a ∈ A and nr randomization units r ∈ R. The treatment assignment
random vector is denoted by T = (T1, T2, . . . , Tnr). For each analysis unit a, the potential outcome
function Ya : {0, 1}nr → R maps treatment assignment vectors to outcomes. Throughout, the object
of interest is the total treatment effect (TTE), µ = 1

na

∑
a[Ya(1) − Ya(0)]. All randomness comes

from treatment assignment. In the usual bipartite experimentation setting, the graph is defined so
that an edge exists between an analysis unit and a randomization unit if the potential outcomes of
the analysis unit depend on the treatment of the randomization unit. The next definition formalizes
this.

Definition 1. A bipartite interference graph is a triple (A,R, E) of analysis units A, randomization
units R, and an adjacency matrix E with representative element ear ∈ {0, 1}. For all a ∈ A,
potential outcomes satisfy Ya(T) = Ya(T

′) for all T,T′ with Tr = T ′
r for all r ∈ R such that

ear = 1.

In this definition, the adjacency matrix E restricts how each analysis unit’s outcomes can vary in
response to treatment assignments, and furthermore is invariant to T. Beyond the trivial example
of a fully connected graph, it is rarely plausible to assume that this knowledge is available in appli-
cations. We take a different approach, motivated by practical settings in which the analyst observes
and wishes to make use of a bipartite graph which contains some important information about how
treatments affect outcomes, but cannot plausibly satisfy the definition above. In particular, we
allow for the bipartite graph to be determined by the treatment assignment.
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Figure 1: Endogenous graph example. Note that after the treatment is applied, edges (A-1) and
(B-4) disappear, while new edges (B-1) and (C-3) emerge.

Formally, potential outcomes for edges are a function of treatment assignments. Each pair
(a, r) ∈ A × R has a corresponding edge potential outcome function Ear : {0, 1}nr → {0, 1}, i.e.
specifying whether the corresponding edge exists as a function of the treatment assignment vector.
Let Ra(T) = {r ∈ R : Ear(T) = 1} denote the randomization units a is connected to under the
treatment T. We assume that as long as a treatment assignment does not change the randomization
units that analysis unit a is connected to and does not change the treatment assignments to those
randomization units, it cannot change a’s outcome. This gives the definition of an endogenous
bipartite interference graph.

Definition 2. An endogenous bipartite interference graph is a triple (A,R, E) of analysis units A,
randomization units R, and an adjacency matrix E with representative element Ear : {0, 1}nr →
{0, 1}. For all a ∈ A, potential outcomes satisfy Ya(T) = Ya(T

′) for all T,T′ with Ra(T) = Ra(T
′)

and Tr = T ′
r for r ∈ Ra(T).

We assume throughout that for all (a, r) ∈ A ×R the functions Ear(·) are unknown, but their
realizations given the treatment assignment Ear(T) are observed (see Figure 1 for illustration).
Some observations on the relation between bipartite vs. unipartite and endogenous vs. exogenous
interference graphs follow.

Remark 1. Definition 2 generalizes Definition 1, with the latter corresponding to the special case of
the former where Ra(T) is constant.

Remark 2. Definition 2 also encompasses the case of endogenous unipartite experimentation, which
is the special case of A = R. In this case, we typically assume Eaa = 1 for all a, so that each unit’s
treatment assignment is allowed to affect itself. The interference graph is allowed to be directed, in
the sense that Eaa′ need not necessarily equal Ea′a for a ̸= a′.
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Remark 3. Given any endogenous bipartite interference graph (A,R, E), it is always possible to find
some (exogenous) bipartite interference graph (A,R, E′) consistent with (A,R, E). Trivially, we
can take E′ to be the fully connected bipartite graph A×R. Somewhat less trivially, we can define
E′ as the set of edges (a, r) such that there exists a treatment realization T satisfying Ear(T) = 1.
In principle, conventional methods for causal inference on networks could be applied on the graph
(A,R, E′). This observation is of limited value to practitioners, if E′ is unobserved and they only
observe a particular, treatment-dependent realization E(T) of endogenous edges.

Graphs built from behavioral signals may not satisfy Definition 1 if they are likely to be causally
affected by treatments, but they may still satisfy Definition 2. For instance, a user-item graph in
an online marketplace where edges represent shown items, may be causally affected by item-level
treatments. Yet we might still assume that user outcomes remain unchanged if neither the set
of shown items nor their treatments change. Similarly, in a Facebook Groups experiment, user
outcomes may plausibly be unaffected if a user’s group memberships and the treatments of those
groups remain the same.

In what follows, we assume we have access to a pre-treatment graph, constructed from data before
the experiment starts. It is denoted Gpre = (A,R, Epre), with representative element epre

ar ∈ {0, 1}.2
For conciseness, unless we wish to make their dependence on T explicit, we write the realized metric
outcomes Ya(T) as ya and realized edge outcomes Ear(T) as ear. We now give examples of how
naively applying existing bipartite estimators without accounting for the endogenous nature of the
graph can bias conventional inference-aware estimators.

Examples of Edge Endogeneity Bias. Treating the realized graph E(T) observed in the setting
of Definition 2 as fixed can bias otherwise unbiased estimators, including the Horvitz-Thompson
(HT) inverse propensity weighted estimator (Horvitz and Thompson (1952)). We assume that
treatment assignments are independent Bernoulli random variables with probability p. The HT
estimator of the TTE is

µ̂HT =
1

na

na∑
a=1

ya

[∏
r∈Ra(T) Tr

p|Ra(T)| −
∏

r∈Ra(T)(1− Tr)

(1− p)|Ra(T)|

]
,

where the term in the square brackets is defined to be zero if Ra(T) = ∅. The first term simply
sums up outcomes ya for the “fully treated” analysis units, i.e. those units a such that all their cor-
responding randomization units are treated (

∏
r∈Ra(T) Tr = 1), and rescales by the factor p−|Ra(T)|

to account for the probability of that event. This gives the estimate of the average outcomes under
T = 1, and analogously the second term gives the estimate of average outcomes under T = 0. By
standard arguments Aronow and Samii (2017), this is an unbiased estimate of the TTE under graph
exogeneity, where Ra(T) does not vary with T.

Under graph endogeneity, this unbiasedness property no longer holds. We illustrate mechanisms
by which bias can arise in the following minimal examples. There is a single randomization unit in
each, implying the HT estimator and the exposure reweighted linear (ERL) estimator of Harshaw
et al. (2021) are identical, so these examples also demonstrate bias in the ERL estimator.

2Even though no-one is treated pre-experiment, we need not have Epre = E(0). The potential outcomes for
the edges and the metric of interest, (E(T), Ya(T)) should be interpreted as their values at some fixed time post-
experiment start. So if edges form and disappear over time regardless of whether treatments are being applied, the
pre-experiment edges Epre and the counterfactual edges that would exist without any treatment as measured at that
future time, E(0), may differ.
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Example 1. R = {r1} and A = {a1}. Unit r1 forms an edge with a1 if and only if T1 = 1.
Outcomes for a1 are y ̸= 0 regardless of the treatment assignment, and T1 ∼ Bernoulli(1/2). The
HT estimator is T1y

1/2 . This is y in expectation, which is biased for the TTE of zero. In this example
the number of edges varies with the treatment assignment, but that is not necessary for bias to exist,
as the next example shows.

Example 2. R = {r1} and A = {a1, a2}. Unit r1 forms an edge with a1 if T1 = 1, and with
a2 otherwise. Outcomes for a1 and a2 are y1 and y2 regardless of the treatment assignment, and
T1 ∼ Bernoulli(1/2). The HT estimator is T1y1

1/2 − (1−T1)y2
1/2 which has expectation y1 − y2, and again

is biased for the TTE of zero. In this example, edge formation induces correlation between treatment
intensity and analysis unit potential outcomes, generating bias.

The preceding examples distinguish between randomization and analysis units and so relate to
bipartite experimentation. Graph endogeneity can also bias treatment effect estimators in the case
of unipartite network interference where this distinction does not exist, as the next example shows.

Example 3. R = A = {a1, a2}. Outcomes for a1 and a2 are y1 and y2 regardless of treatment
assignment, and T1, T2 are independent Bernoulli(1/2) draws. A directed edge runs from a1 to a2
if and only if T1 = 1. The HT estimator is

µ̂HT =


−y1/2− y2/2 if T1 = T2 = 0

−y1/2 + y2/2 if T1 = 0, T2 = 1

y1/2 if T1 = 1, T2 = 0

y1/2 + y2/4 if T1 = T2 = 1,

with expectation y2/16, and is biased for the TTE of zero.

3 Models of Edge Formation

Just as estimating total treatment effects under exogenous interference requires imposing some
additional structure on the interference mechanism (Basse and Airoldi 2018), we will need to rule
out arbitrary dependence of edges on treatment assignments. Let Sar be a subset of R satisfying
Ear(T) = Ear(T

′) for all T,T′ such that Ts = T ′
s for all s ∈ Sar. That is, whether the edge (a, r)

exists depends only on the treatment assignments to the randomization units in Sar. Examples of
various edge formation assumptions follow.

• Unrestricted edges. Sar = R. Edges can depend arbitrarily on treatments.

• Exogenous edges. Sar = ∅. Edges are unaffected by treatments, as per Definition 1.

• r-driven edges. Sar = {r}. Edges depend only on the randomization unit’s treatment status.
This can be interpreted as a SUTVA (Stable Unit Treatment Value Assumption) assumption
on edge formation: edge outcomes depend only on the treatment assignment to the random-
ization unit in question, not by treatment assignments to other units.

• Sa-driven edges. Sar = Sa ⊂ R. Analysis unit a′s edge formation depends only on treatment
assignments to a subset of randomization units.

• Sr-driven edges. Sar = Sr ⊂ R. Randomization unit r′s edge formation depends only on
treatment assignments to a subset of randomization units.

The following statistical tests can provide evidence on how appropriate the assumptions of
exogenous or r-driven edges may be.
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Detecting general departures from edge exogeneity. Define the null hypothesis as H0 :
Sar = ∅ for all a, r, and consider the following test statistic based on the binomial likelihood for
each analysis unit’s number of treated edges:

W (T, E(T)) =
∑
a

log

[( ∑
r ear∑

r earTr

)
p
∑

r earTr(1− p)
∑

r ear(1−Tr)

]
.

Under H0, E(T) is independent of T, and the conditional distribution of W given E can be simulated
by resampling T according to the experiment design. Following the usual randomization inference
logic, we obtain a valid statistical test by rejecting the null if the value of W is larger than the
upper αth quantile of this null conditional distribution.

This test has power against a variety of departures from exogenous edges, including but not
limited to r-driven edges. If treated randomization units disproportionately form new edges, this
will lead to analysis units having more treated units than would be expected compared to the
binomial benchmark. And if analysis units are more likely to form additional edges based on the
treatment intensity of their existing edges, this will similarly lead to a departure from the binomial
benchmark.3 It is however not powered to detect all conceivable departures from exogenous edges,
and there are somewhat contrived examples of endogenous edges which will not be detected by this
test.4

Detecting r-driven edges. If the alternative hypothesis is that edges only depend on the ran-
domization unit’s treatment status, a straightforward and valid procedure is to test whether treat-
ments are generating more or fewer edges in aggregate with a simple difference-in-means t-test. Let
Er =

∑
a(ear − epre

ar ) be the net number of edges added relative to the pre-experiment graph. We
can then test the null hypothesis that E[Er | Tr = 1] = E[Er | Tr = 0].

For TTE estimation, we focus exclusively on the case of r-driven edges. This strikes a balance
between meaningfully enriching the standard exogenous bipartite graph model, and still imposing
enough structure on the problem to be able to derive useful statements on treatment effect magni-
tudes. This choice is also motivated by practicality—while setting Sar to be some strict superset of
{r} is more general, in applications there may be no clear principles available for constructing such
sets. Note that we are relaxing the common assumption of the interference graph being fixed, and
in this respect generalize, rather than specialize, existing work—the r-driven edges assumption is
trivially satisfied for a fixed graph. Some restrictions on edges and outcomes are indeed necessary
to make meaningful claims about treatment effects in this more general setting.

We opt for the r-driven model of edge endogeneity as the simplest non-trivial generalization of
exogenous edges. Robustness under the violation of this assumption and relaxing the assumption
to Sr-driven edges, where edge formation can depend on peers’ treatments, are interesting future
directions to explore. We wish to note that, while it is attractive to dispense with this assumption
entirely, we see it as being analogous to the required restrictions on the interference structure in the
exogenous graph case—without some structure, causal inference is impossible (see, e.g., Basse and
Airoldi (2018)).

3To build intuition for the former case, imagine units form edges if and only if they are treated. Then for all
analysis units that have any edges, they are all maximally treated. For the latter case, imagine analysis units will form
an edge with a single predetermined randomization unit, and then form another edge with another randomization
unit if and only if the previous unit was treated. Then there will be no analysis units connected to a single treated
randomization unit.

4Consider the case where there is a single analysis unit and two randomization units, and e11 = 1(T2 = 1). The
treatment intensity for the analysis unit conditional on an edge existing is indeed binomial, despite the fact that
whether an edge exists in the first place depends on the other randomization unit.
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4 A Class of Unbiased TTE Estimators

4.1 Generalized Linear Exposure-Response Model

We specify the outcome model ya = αa + βaxa, where xa =
∑

r Trearwar is the weighted number of
treated edges a is connected to in the realized, post-treatment graph, and war’s are known weights.
The war’s are a modeling choice, and we recommend the default choice of

war = 1/(# pre-treatment edges connected to a).

The researcher might choose to incorporate domain knowledge into these weights based on how they
expect a node to be affected by others (e.g., a user may be more affected by friends with whom they
message frequently, or a buyer may be more affected by a seller they have frequently bought from
in the past). These weights play the same role as the weights in the outcome model of Harshaw
et al. (2021). This outcome model satisfies the restrictions on potential outcomes stipulated in
Definition 2, and is a generalization of the linear exposure-response model in Harshaw et al. (2021)
to endogenous bipartite graphs. Outcomes are linear in the number of treated randomization units
the analysis unit is exposed to, but the linear response is allowed to vary across analysis units.
Treatments only affect outcomes through the observed edges, but the set of observed edges is
potentially treatment dependent. By definition, the TTE is

µ =
1

na

∑
a

[Ya(1)− Ya(0)] =
1

na

∑
a

Wa(1)βa, (1)

where Wa(1) =
∑

r warEar(1).

4.2 Estimation Strategy

We now give a high-level overview of our approach to estimating the TTE. The two components of
(1) are βa, the incremental effect of treating an additional randomization unit for analysis unit a,
and Wa(1), the total number of edges a would have under a full treatment roll-out. To construct an
estimator of the TTE, we propose a class of unbiased estimators for each of these two components.
We prove that the estimators for these two components are in addition uncorrelated with each other,
so their product is an unbiased estimator for the summand of (1).

Considering βa first, Harshaw et al. (2021) propose ya(xa − Exa)/Var(xa) as an unbiased es-
timator in the exogenous bipartite graph case. This estimator is no longer feasible because the
expectation and variance of xa are unknown, due to the endogenous nature of the graph edges.
Moreover, as the examples in Section 2 show, naively applying this estimator assuming the real-
ized graph is exogenous will lead to bias. To remedy this issue, we borrow from the literature on
instrumental variables. Let zua =

∑
r Truar be a weighted exposure variable, where uar’s are fixed

weights chosen by the researcher. If Cov(xa, zua ) is known and non-zero, we have a class of unbiased
estimators for βa, {

β̂u
a = ya(z

u
a − Ezua )/Cov(xa, zua ) | u : A×R → R

}
. (2)

For Wa(1), let

Ŵar(1)
c
=

Trwar(ear − car)

p
+ warcar.

Under r-driven edges it follows that E[Ŵar(1)
c
] = warE[ear | Tr = 1] = warEar(1), and so a class

of unbiased augmented inverse probability weighted estimators is{
Ŵa(1)

c
=
∑
r

Ŵar(1)
c
| c : A×R → R

}
. (3)
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Our estimation strategy involves giving conditions ensuring that Cov(xa, zua ) is known and non-
zero, and that our estimator for βa is uncorrelated with our estimator for Wa(1). The key assumption
is the existence of an observed “anchor” subgraph, the edges of which would exist under any treat-
ment. This suffices for unbiasedness of our TTE estimator. Consistency and asymptotic normality
follow under additional assumptions on graph sparsity, which limit dependence across analysis units
and allow the application of convergence theorems for dependent data.

4.3 Using Anchor Instruments

In general, though the experimental design and hence the joint distribution of T is known, the
covariance between the treatment intensity xa =

∑
r Trearwar and the instrument zua =

∑
r Truar

is unknown. This is because it is a function of the unobserved values that the random variables
ear would take on under counterfactual treatment assignments. This suggests a path forward for a
particular class of instruments for which Cov(xa, zua ) can be calculated. If there were a known set of
pre-experiment edges that would continue to exist regardless of treatment assignments, this would
allow us to circumvent the difficulties posed by not observing ear under counterfactual treatments.
To start formalizing these observations, we present the definition of an anchor subgraph.

Definition 3 (Anchor Subgraph). In Definition 2, we say G ⊂ A × R is an anchor subgraph, if
Ear(T) = 1 for any T ∈ {0, 1}nr , (a, r) ∈ G.

An anchor subgraph is a set of edges that would exist under any treatment.5 A subgraph in the
pre-experiment data may plausibly satisfy this property, in which case we can use it to construct
an instrument for the endogenous xa’s.

As a practical example, consider Facebook groups, where the bipartite graph links users (analysis
units) to groups (randomization units). User outcomes depend on the treatment of connected
groups, and those connections may themselves be affected by the treatment. To construct an
anchor subgraph, we can identify groups a user is unlikely to leave—e.g., using a predictive model
trained on pre-treatment data. Similarly, in unipartite settings, persistent friendships may serve as
anchor edges. These assumptions can be validated empirically—for any candidate anchor subgraph,
we can estimate what fraction of edges disappear under treatment. To continue the Facebook
groups example, less than 0.5% of all group memberships disappear over two weeks. By contrast,
experimental treatments may cause a larger number of new memberships to form over the same
period, with a recent test generating a rate of edge formation of 0.75%.

The following theorem gives conditions for the TTE estimator we propose to be unbiased. As-
sumption (a) of r-driven edges restricts how treatment assignment affects edge creation or deletion
and is used throughout the proof. Assumption (b) describes the experimental design. Assumption
(c) requires that the variation in the instrument zua is entirely driven by treatment assignments to
the known anchor subgraph G. Assumption (d) ensures Cov(β̂u

a , Ŵa(1)
c
) = 0. Assumptions (e) and

(f) guarantee that the instrument zua has some non-zero correlation with the treatment intensity xa.

Theorem 1. In the setting of Definition 2, suppose G is a known anchor subgraph. If (a) edges are
r-driven; (b) the treatment assignments are independent Bernoulli random variables with probability

5For our Theorem 1 and Theorem 2, we can relax this assumption to requiring only Ear(1) = 1 under r-driven
edges. Thus the existence of a known set of edges in the pre-experiment graph which satisfy the anchor subgraph
property can be seen as a milder version of a “compliance”-type assumption familiar from the instrumental variables
literature (Angrist et al. 1996), which in this setting would amount to requiring that all pre-treatment edges exist
after the treatment has been applied.
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p; (c) {(a, r) | uar ̸= 0} ⊂ G; (d) car = I((a, r) ∈ G); (e) war ̸= 0 for all (a, r) ∈ G; and (f)
|{r | uar ̸= 0}| > 0 for all a, then

µ̂u,c =
1

na

∑
a

β̂u
a · Ŵa(1)

c
(4)

is an unbiased estimator of the TTE in (1).

Let Ra = {r ∈ R | Ear(1) = 1} be the set of randomization units connected to a under
treatment, and Ar = {a ∈ A | Ear(1) = 1} the set of analysis units connected to r under treatment.
Let Va = {r ∈ R | uar ̸= 0} be the set of randomization units connected to a in the anchor subgraph.
To see the time complexity of computing (4), we note that

β̂u
a =

ya
∑

r uar(Tr − p)

p(1− p)
∑

r waruar

requires Θ(|Va|) calculations, and Ŵa(1)
c

requires Θ(|Ra|) calculations. Thus, the total time com-
plexity is Θ(

∑
a |Ra|).

To characterize the limiting behavior of the estimator proposed in Theorem 1, we consider
an asymptotic regime in which the bipartite graph increases in size. If the graph is sufficiently
sparse in this limit—i.e. the maximum degree of the analysis units and randomization units grows
sufficiently slowly relative to the number of analysis units—then we can apply convergence results
for dependent data, which allow us to derive consistency and asymptotic normality. Asymptotic
normality relies on an application of Stein’s method (Stein 1986; Ross 2011), which has proven to be
broadly applicable in demonstrating asymptotic normality in network settings (Chin 2018; Harshaw
et al. 2021). Theorem 2 below summarizes these results. Assumptions (a), (b) and (c) ensure the
instrument is positively correlated with the treatment exposure level xa. Assumption (c) limits the
total weight of randomization units connected to the same user and the discrepancy between those
weights, and assumption (d) bounds outcomes.

Theorem 2. We maintain the assumptions in Theorem 1, and further assume (a) |Va| > 0; (b)
uar ≥ 0; (c) Wl/|Ra| ≤ |war| ≤ Wh/|Ra| for r ∈ Ra; and (d) |ya| ≤ M , where p, 1− p, Wl, Wh, M
are constants bounded away from 0 and ∞. Then, letting dA = maxa∈A |Ra| and dR = maxr∈R |Ar|,

1. Var(µ̂u,c) = O(d3AdR/na), and thus µ̂u,c is consistent if d3AdR/na → 0;

2. if naVar(µ̂u,c) is bounded away from zero and d10A d4R/na → 0, then (µ̂u,c − µ)/
√

Var(µ̂u,c)
converges in distribution to N (0, 1).

With asymptotic normality and a variance estimator, we can construct confidence intervals.
Section 4.4 provides a modified estimator with tractable variance that can be used as a proxy for
uncertainty quantification for the original estimator. Section 5 shows this proxy variance yields
confidence intervals with close-to-nominal coverage in simulations.

4.4 Statistical Testing under the Sharp Null

Based on the estimators of (2), we can construct a test for the sharp null Hsharp
0 : βa = 0 for all a.

Under Hsharp
0 , ya = αa is independent of T. Define a modified variant of (4),

µ̃u,c =
1

na

∑
a

β̂u
a

∑
r

(warcar)

=
1

na

∑
a

ya(z
u
a (T)− Ezua )

Cov(xa, zua )

∑
r

(warcar),

(5)
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where the dependence of zua on T is explicit. Under Hsharp
0 and the assumptions of Theorem 1, all

randomness in µ̃u,c is from zua (T), the distribution of which is known.

Theorem 3. We maintain the assumptions in Theorem 2. Define the sharp null Hsharp
0 : βa = 0

for all a. The Hsharp
0 -null distribution of |µ̃u,c| in (5) conditional on {ya : a ∈ A} is known. Denote

cα as its α-upper quantile, α ∈ (0, 1). Rejecting if |µ̃u,c| ≥ cα is a valid size-α test for Hsharp
0 , and

the power goes to 1 if d3AdR/na → 0 and

lim inf

∣∣∣∣∣ 1na

∑
a

βa
∑
r

(warcar)

∣∣∣∣∣ > 0.

The time complexity to calculate (5) is Θ(
∑

a |Va|). The exact cα is expensive to compute, but
noting that E[µ̃u,c | {ya : a ∈ A},Hsharp

0 ] = 0, we can obtain a more conservative cutoff based on
Var(µ̃u,c | {ya : a ∈ A}, Hsharp

0 ), the time complexity to calculate which is also Θ(
∑

a |Va|), because
we have

Var(µ̃u,c | {ya : a ∈ A}, Hsharp
0 ) =

1

p(1− p)

∑
r

(∑
a

yaCauar
naUa

)2

,

where Ca =
∑

r warcar and Ua =
∑

r waruar.

5 Simulations

5.1 Simulation Setting

We let na = 2000 and nr = 400. We generate pre-treatment edges epre
ar ’s as independent Bern(0.1)

random variables. Our algorithm takes the anchor edges to be the same as the pre-treatment edges.
The edge outcome function is r-driven and defined as Ear(Tr) = epre

ar + Tr(1 − 2epre
ar )Bern(panchor)

if (a, r) is anchor, and epre
ar + Tr(1− 2epre

ar )Bern(pnon-anchor) otherwise. That is, the edge outcome is
the same as the pre-treatment edge if no treatment is applied to the randomization unit; otherwise,
it will flip to the opposite of the pre-treatment edge with probability panchor if the pre-treatment
edge exists, and pnon-anchor if it does not.

The αa’s are sampled from independent Unif([0, 1]) variables, and the true treatment effect is
set to be βa = β for all a ∈ A. We run 1000 Monte Carlo simulations for various values of β,
panchor and pnon-anchor and compare our anchor-based estimator (Anchor) with the ERL estimator
(Harshaw et al. 2021) based on (a) pre-treatment graph (ERLpre) and (b) post-treatment graph
(ERLpost). The ERL estimators are

µ̂ERLpre =
1

na

∑
a

ya(x
pre
a (T)− p)

p(1− p)/(
∑

r∈R epre
ar )

and

µ̂ERLpost =
1

na

∑
a

ya(x
post
a (T)− p)

p(1− p)/(
∑

r∈R epost
ar )

,

where xpre
a (T) =

∑
r∈R epre

ar Tr∑
r∈R epre

ar
and xpost

a (T) =
∑

r∈R epost
ar Tr∑

r∈R epost
ar

. Here, epre
ar and epost

ar are the pre-

treatment and post-treatment edges between a and r, respectively. We set β = 2, panchor = 2% and
pnon-anchor = 0.2% when they are not being varied.
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5.2 Bias Comparison

Figure 2 shows the biases of the estimators under different parameter values. The anchor estimator
results are consistent with unbiasedness with respect to different values of treatment effect (β) and
edge formation intensity (pnon-anchor), as expected given our theoretical results. Using the post-
treatment graph (ERLpost) naively can lead to severe overestimation due to the positive correlation
between the marginal effect of an edge and the number of treated edges. Estimates based on the
pre-treatment graph are still biased, but in the opposite direction, and the magnitude of the bias is
much smaller as it stems solely from graph misspecification. Unbiasedness of the anchor estimator
is achieved at the cost of higher variance, and the variance grows with pnon-anchor; with more edges
being formed in response to treatment, we expect larger metric fluctuations between test and control
contributed by Ŵar(1)

c
, and hence, higher variance of the anchor estimator.

The anchor estimator is quite robust to violations of the anchor subgraph assumption, as we
increase panchor. In Figure 2, we can see that its bias increases with panchor, but stays relatively
small compared to the magnitude of the treatment effect, which is 2. ERLpre is not directly affected
by panchor and is stable. On the other hand, the bias of ERLpost changes its sign with the number
of anchor edges disappearing. This is most likely due to the correlation between the marginal effect
(which is positive) and the number of edges (that starts to diminish) becoming negative leading to
underestimation of the true effect.

Figure 2: Bias with respect to different parameter values. Error bars are empirical standard devia-
tions of the estimators over 1000 Monte Carlo runs.

5.3 Uncertainty Quantification

In order to provide a confidence interval (CI) for the anchor estimator, we appeal to asymptotic
normality and use Var(µ̃u,c) under the sharp null as a proxy for the anchor estimator Var(µ̂u,c),
where µ̃u,c is the estimator (5) defined in Section 4.4. We observe in Figure 3 that this approach
delivers close to the nominal level coverage under different values of treatment effect (β) and anchor
subgraph violation (panchor), with only modest under-coverage. By contrast, coverage is low when

12



Figure 3: 95%-CI coverage from 1000 independent Monte Carlo runs with respect to different
parameter values. Error bars represent the 95%-CI for the true coverage probability.

the edge formation density (pnon-anchor) is high, which is not surprising since the variance proxy is
for an estimator that ignores the direct effect of newly formed edges.

6 Endogenous Unipartite Graphs

An endogenous unipartite interference graph is the special case of Definition 2, where the analysis
and randomization units are the same: A = R. This definition allows for directed interference, in the
sense that Ear may not equal Era. We specify the outcome model for all a as ya = αa+βaxa+γaTa,
where xa =

∑
r Trearwar and we impose waa = 0. Thus, βaxa is the indirect effect on a′s outcome

coming from the treatment of others, and γaTa is the direct effect coming from a itself being treated.
The TTE is 1

na

∑
a[Wa(1)βa + γa]. Let γ̂a = Taya/p − (1 − Ta)ya/(1 − p). The previous result

on unbiasedness in the bipartite setting can be directly applied to construct a class of unbiased
estimators in the unipartite setting. We employ the previously developed bipartite estimator to
estimate the indirect effect and use γ̂a as an unbiased estimator of the direct effect. Summing the
two gives an unbiased estimator of the TTE, µ̂u,c

uni, defined as

µ̂u,c
uni =

1

na

∑
a

µ̂u,c
a,uni =

1

na

∑
a

[
β̂u
a · Ŵa(1)

c
+ γ̂a

]
. (6)

Corollary 1. Under the assumptions of Theorem 1, with the outcome model ya = αa+βaxa+γaTa,
if waa = uaa = 0 for all a, an unbiased estimator of the TTE is µ̂u,c

uni.

The restriction waa = uaa = 0 is innocuous given the presence of a separate term γaTa in the
outcome model for the direct effect. The summands in (6) follow the same dependence structure
as those in (4). Consistency and asymptotic normality consequently follow directly from the same
arguments as the bipartite case, under the same conditions on the growth of the maximum degrees,
dA and dR.

Corollary 2. Under the assumptions of Theorem 2, with the outcome model ya = αa+βaxa+γaTa,
if waa = uaa = 0 for all a, then

1. Var(µ̂u,c
uni) = O(d3AdR/na), and thus µ̂u,c is consistent if d3AdR/na → 0;

2. if naVar(µ̂u,c
uni) is bounded away from zero and d10A d4R/na → 0, then (µ̂u,c − µ)/

√
Var(µ̂u,c

uni)
converges in distribution to N (0, 1).

7 Conclusion

We establish a foundation for estimating and testing treatment effects on endogenous graphs, but
significant extensions and open questions remain. Future research could characterize the variance-
minimizing choice of weights uar used to construct instruments zua . A consistent and scalable

13



variance estimator could be used in conjunction with Theorem 2 to construct confidence intervals
around the TTE estimator, complementing the testing results of Section 4. And while we generalize
the linear outcome model from the conventional exogenous edge setting, the outcome model may be
implausible in some applications. We believe the research direction of causal inference on endogenous
graphs holds promise for advancing our understanding of treatment effects in complex, real-world
networks.
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A Variance and Confidence Interval for ERL Estimators

Let

xpre
a (T) =

∑
r∈R epre

ar Tr∑
r∈R epre

ar

and

xpost
a (T) =

∑
r∈R epre

ar Tr∑
r∈R epost

ar

,

where epre
ar and epost

ar are the pre-treatment and post-treatment edge between a and r. The ERL
estimators (Harshaw et al. 2021) are defined as

µ̂pre =
1

na

∑
a

ya(x
pre
a (T)− p)

p(1− p)/(
∑

r∈R epre
ar )

and
µ̂post =

1

na

∑
a

ya(x
pre
a (T)− p)

p(1− p)/(
∑

r∈R epost
ar )

In stead of using the variance estimator proposed in Harshaw et al. (2021), we calculate Var(µ̂pre |
y, epre) and Var(µ̂post | y, epost) under the strong null, where (y, epre, epost) is independent of T,
and use them to construct confidence intervals based on asymptotic normality in our simulations in
Section 5.

B Proofs

Proof of Theorem 1. We first show that Cov(xa, zua ) is known and non-zero so that β̂u
a is a feasible

estimator. By Lemma 1, Cov(xa, zua ) = p(1 − p)
∑

r warear(1)uar = p(1 − p)
∑

r waruar. The last
simplification is justified because when uar ̸= 0, ear(1) = 1. By assumptions (e) and (f) in the
theorem statement, this covariance is non-zero.

Next, we need to show that Cov
(
β̂u
a , Ŵa(1)

c)
= 0 for each a ∈ A. This result is proved in

Lemma 2.
Now we know that E

[
β̂u
aŴa(1)

c]
= E

[
β̂u
a

]
E
[
Ŵa(1)

c]
= βaWa(1). Averaging over a ∈ A

proves the theorem.

Lemma 1. In the setting of Definition 2, when the treatment assignments are pairwise independent
with marginal probability p,

Cov

(∑
r

sar(Tr)Tr,
∑
r

var(Tr)Tr

)
= p(1− p)

∑
r

sar(1)var(1),

where sar, var: {0, 1} → R are any deterministic functions.

17



Proof of Lemma 1. We notice that Trsar(Tr) ≡ Trsar(1) and Trvar(Tr) ≡ Trvar(1), so

Cov

(∑
r

sar(Tr)Tr,
∑
r

var(Tr)Tr

)

= Cov

(∑
r

sar(1)Tr,
∑
r

var(1)Tr

)
=
∑
r

Cov (sar(1)Tr, var(1)Tr)

+
∑
r

∑
r′ ̸=r

Cov (sar(1)Tr, var′(1)(Tr′))︸ ︷︷ ︸
=0, pairwise independence

=
∑
r

sar(1)var(1)Cov (Tr, Tr)

= p(1− p)
∑
r

sar(1)var(1).

Lemma 2. In the setting of Definition 2, suppose G is an anchor sub-graph. If (a) edges are r-
driven; (b) the treatment assignments are independent Bernoulli random variables with probability
p; (c) {(a, r) | uar ̸= 0} ⊂ G; (d) car = I((a, r) ∈ G); (e) war ̸= 0 for all (a, r); and (f)
|{r | uar ̸= 0}| > 0 for all a, then

Cov
(
Ŵa(1)

c
, β̂u

a

)
= 0,

where β̂u
a and Ŵa(1)

c
are from equations (2) and (3).

Proof of Lemma 2. We omit the u and c superscripts.
We decompose the covariance as

Cov
(
Ŵa(1), ya

(
za − Eza

Cov(xa, za)

))
= E

[
Cov

(
Ŵa(1), ya

(
za − Eza

Cov(xa, za)

)
| TA

)]
︸ ︷︷ ︸

X

+ Cov
(
E
[
Ŵa(1) | TA

]
,E
[
ya

(
za − Eza

Cov(xa, za)

)
| TA

])
︸ ︷︷ ︸

Y

,

where A = {r | uar ̸= 0} ⊂ {r | (a, r) ∈ G} is the set of anchor randomization units for analysis
unit a, and TA = {Ta | a ∈ A}. By definition, za is a function of TA.

For term X, note that

Cov
(
Ŵa(1), ya

(
za − Eza

Cov(xa, za)

)
| TA

)
=

(
za − Eza

Cov(xa, za)

)
Cov

(
Ŵa(1), ya | TA

)
=

(
za − Eza

Cov(xa, za)

)
βa(1− p)

∑
r ̸∈A

w2
ar(ear(1)− car)ear(1)︸ ︷︷ ︸
constant
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is the product of a constant (by Lemma 1) and a mean-zero random variable, so X, its expectation,
is zero.

For term Y , we have

E
[
Ŵa(1) | TA

]
=
∑
r∈A

Trwar(ear − car)/p︸ ︷︷ ︸
=0

+
∑
r∈A

warcar +
∑
r ̸∈A

warear(1),

where the first term is zero because Trwar(ear − car) = Trwar(ear(1) − car), and ear(1) = car = 1

for r ∈ A. This makes E
[
Ŵa(1) | TA

]
a constant, and thus Y = 0.

Lemma 3. Under the assumptions of Theorem 2, we have

|µ̂u,c
a | = |β̂u

aŴa(1)
c
| ≤ MWh|Ra|

p2(1− p)Wl
. (7)

Proof of Lemma 3. By the anchor sub-graph assumption, Va ⊂ Ra. Then we have xa is a function
of TRa and zua is a function of TVa , and hence β̂u

a is a function of TRa∪Va = TRa . For Ŵa(1)
c
, we

notice that car = I(r ∈ Va), and then

Ŵa(1)
c
=
∑
r

(
Trwar(ear(1)− car)

P(Tr = 1)
+ warcar

)
=
∑
r∈Va

(
Trwar(ear(1)− 1)

p
+ war

)
+
∑
r ̸∈Va

(
Trwarear(1)

p

)

=
∑
r∈Va

war +
∑
r ̸∈Va

(
Trwarear(1)

p

)

=
∑
r∈Va

war +
∑

r∈Ra\Va

(
Trwarear(1)

p

)

+
∑
r ̸∈Ra

(
Trwarear(1)

p

)

=
∑
r∈Va

war +
∑

r∈Ra\Va

(
Trwar

p

)

(8)

is a function of TRa\Va
. As a result, µ̂u,c

a is a function of TRa .
From (8), we naturally have

|Ŵa(1)
c
| ≤ Wh

|Ra|
(|Va|+ (|Ra| − |Va|)/p) ≤

Wh

p
. (9)
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Next, we examine |β̂u
a |. Without loss of generality, we assume we have normalized u so

∑
r uar =

1. This is possible because we have assumed at least one uar is non-zero for each a.

|β̂u
a | = |ya||zua − E[zua ]|/|Cov(xa, zua )|

≤ M |
∑
r

uar(Tr − p)|/|p(1− p)
∑
r

uarwarear(1)|

≤ M/|p(1− p)
∑
r

uarwarear(1)|

= M/|p(1− p)
∑
r∈Va

uarwar|

≤ M |Ra|/|p(1− p)Wl

∑
r∈Va

uar|

=
M |Ra|

p(1− p)Wl
.

(10)

Combining (9) and (10), we arrive at (7).

Proof of Theorem 2. We define I(i) = {j ∈ R | Ri ∩Rj ̸= ∅}. It follows directly that |I(i)| ≤ dadr.
Then

Var(µ̂) =
1

n2
a

∑
i∈A

∑
j∈A

Cov(µ̂i, µ̂j)

=
1

n2
a

∑
i∈A

∑
j∈I(i)

Cov(µ̂i, µ̂j)

(µ̂i is independent of µ̂j if Ri ∩Rj = ∅)

≤ 1

n2
a

∑
i∈A

∑
j∈I(i)

√
Var(µ̂i)Var(µ̂j)

≤ 1

n2
a

∑
i∈A

∑
j∈I(i)

√
E(µ̂2

i )E(µ̂2
j )

≤ 1

n2
a

∑
i∈A

∑
j∈I(i)

M2W 2
h |Ri||Rj |

p4(1− p)2W 2
l

(Lemma 3)

≤ dadr
na

M2W 2
hd

2
a

p4(1− p)2W 2
l

= O(d3adr/na).

(11)

In the above, we have suppressed the u, c superscripts for better readability. This proves claim (i).
We let ai = µ̂u,c

i − µi in Lemma 4. We have shown in the proof of Theorem 1 that E[ai] = 0.
By Lemma 3,

|ai| ≤ |µ̂u,c
i |+ |µi| = |µ̂u,c

i |+ |E[µ̂u,c
i ]| ≤ |µ̂u,c

i |+ E[|µ̂u,c
i |]

≤ 2MWh|Ra|
p2(1− p)Wl

≤ 2MWhda
p2(1− p)Wl

. (12)

In the proof of Lemma 3, we have shown that both β̂ and Ŵa(1) are functions of TRa . Therefore,
µ̂u,c
a is independent of µ̂u,c

b if Ra ∩Rb = ∅. This means D ≤ dadr. With this fact, and (12), we have

dW

(
µ̂u,c − µ√
Var(µ̂u,c)

, Z

)
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≤ d2ad
2
r

σ3n2
a

[
2MWhda

p2(1− p)Wl

]3
+

√
28

π

d
3/2
a d

3/2
r

σ2n
3/2
a

[
2MWhda

p2(1− p)Wl

]2
= O

(
d5ad

2
r

σ3n2
a

+
d
7/2
a d

3/2
r

σ2n
3/2
a

)
= O

(
d5ad

2
r

n
1/2
a

+
d
7/2
a d

3/2
r

n
1/2
a

)

= O

(
d5ad

2
r

n
1/2
a

)
.

This proves claim (ii).

Lemma 4 (Lemma 3.6 in Ross (2011)). Let a1, a2, . . . , an be random variables with zero mean
and finite fourth-moments. Define X =

(
1
n

∑n
i=1 ai

)
/σ, where σ2 = Var

(
1
n

∑n
i=1 ai

)
. Then for a

standard normal random variable Z ∼ N (0, 1), we have

dW (X,Z) ≤ D2

σ3n3

n∑
i=1

E[|ai|3] +
√

28

π

D3/2

n2σ2

√√√√ n∑
i=1

E[a4i ], (13)

where D is the maximum dependency degree of the random variables and dW (·, ·) is the Wasserstein
distance.

Proof of Theorem 3. Due to the discrete nature of µ̃u,c, randomization may be needed to achieve
exact level-α. This concern goes away in the limit.

We suppress the superscript (u, c) in µ̃. The validity of test follows by definition. We begin by
showing that cα → 0 and µ̃− µ∗ p→ 0, where µ∗ = 1

na

∑
a βa

∑
r(warcar).

We first show cα → 0. We define µ̃i = β̂i
∑

r(wircir), and J (i) = {j ∈ R | Vi ∩ Vj ̸= ∅}. It
follows directly that |J (i)| ≤ dadr. From (10), we have

|µ̃i| ≤ |β̂i||
∑
r

(wircir)| ≤
M |Ra|

p(1− p)Wl
· Wh

|Ra|
|Va|. (14)

Under Hsharp
0 , the conditional variance of µ̃ given {ya | a ∈ A} is

Var(µ̃ | y) = 1

n2
a

∑
i∈A

∑
j∈A

Cov(µ̃i, µ̃j | y)

=
1

n2
a

∑
i∈A

∑
j∈J (i)

Cov(µ̃i, µ̃j | y)

(if Vi ∩ Vj = ∅, zui is independent of zuj
and thus µ̃i is independent of µ̃j)

≤ 1

n2
a

∑
i∈A

∑
j∈J (i)

√
Var(µ̃i | y)Var(µ̃j | y)

≤ 1

n2
a

∑
i∈A

∑
j∈J (i)

√
E(µ̃2

i )E(µ̃2
j )

≤ 1

n2
a

∑
i∈A

∑
j∈J (i)

M2W 2
h |Vi||Vj |

p2(1− p)2W 2
l

(because of (14))

≤ dadr
na

M2W 2
hd

2
a

p2(1− p)2W 2
l

= O(d3adr/na) → 0.

(15)
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Note that under Hsharp
0 ,

Var(µ̃ | y) = E[µ̃2 | y]
= E[µ̃2 | y, |µ̃| ≥ cα]P (|µ̃| ≥ cα | y)
+ E[µ̃2 | y, |µ̃| < cα]P (|µ̃| < cα | y)

≥ E[µ̃2 | y, |µ̃| ≥ cα]P (|µ̃| ≥ cα | y)
≥ c2αα.

We proved the left hand side goes to zero, so cα must go to zero.
Next, we show µ̃− µ∗ p→ 0. From the fact that β̂a is unbiased for βa, we get

E[µ̃] =
1

na

∑
a

βa
∑
r

(warcar) → µ∗.

As for Var(µ̃),

Var(µ̃) =
1

n2
a

∑
i∈A

∑
j∈A

Cov(µ̃i, µ̃j)

=
1

n2
a

∑
i∈A

∑
j∈I(i)

Cov(µ̃i, µ̃j)

(if Ri ∩Rj = ∅, µ̃i is independent of µ̃j)

≤ 1

n2
a

∑
i∈A

∑
j∈I(i)

√
Var(µ̃i)Var(µ̃j)

≤ 1

n2
a

∑
i∈A

∑
j∈I(i)

√
E(µ̃2

i )E(µ̃2
j )

≤ 1

n2
a

∑
i∈A

∑
j∈I(i)

M2W 2
h |Vi||Vj |

p2(1− p)2W 2
l

(because of (14))

≤ dadr
na

M2W 2
hd

2
a

p2(1− p)2W 2
l

= O(d3adr/na) → 0,

(16)

where I(i) = {j ∈ R | Ri ∩Rj ̸= ∅} is defined at the beginning of the proof of Theorem 2. Now we
have shown E[µ̃− µ∗] = 0 and Var(µ̃− µ∗) → 0, which means µ̃− µ∗ p→ 0.

Finally, there exists ε > 0 so that eventually |µ∗| > ε (because the limit inferior of |µ∗| is
positive) and cα < ε/2 (because cα → 0) as na → ∞. Once this happens,

P (|µ̃| ≤ cα) ≤ P (|µ̃| ≤ ε/2) ≤ P (|µ̃− µ∗| ≥ ε/2) → 1.
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