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Abstract

Sequential Monte Carlo, also known as particle filters, has been widely accepted as a power-
ful computational tool for making inference with dynamical systems. A key step in sequential
Monte Carlo is resampling, which plays the role of steering the algorithm towards the future
dynamics. Several strategies have been proposed and used in practice, including multinomial re-
sampling, residual resampling, optimal resampling, stratified resampling, and optimal transport
resampling. We show that, in one dimensional cases, optimal transport resampling is equiv-
alent to stratified resampling on the sorted particles, and they both minimize the resampling
variance as well as the expected squared energy distance between the original and resampled
empirical distributions; in multidimensional cases, the variance of stratified resampling after
sorting particles using Hilbert curve in Rd is O(m−(1+2/d)), an improved rate compared to the
original O(m−(1+1/d)), where m is the number of resampled particles. This improved rate is the
lowest for ordered stratified resampling schemes, as conjectured in Gerber et al. (2019). We also
present an almost sure bound on the Wasserstein distance between the original and Hilbert-
curve-resampled empirical distributions. In light of these results, we show that, for d > 1, the
mean square error of sequential quasi-Monte Carlo with n particles can be O(n−1−4/[d(d+4)]) by
implementing Hilbert curve resampling and selecting a specific low-discrepancy set. To the best
of our knowledge, this is the first known convergence rate lower than o(n−1).

Keywords. Hilbert space-filling curve, particle filter, resampling, sequential Monte Carlo (SMC), strat-
ification

1 Introduction

Sequential Monte Carlo dates back to the study of self-avoiding random walks (Hammersley and
Morton 1954; Rosenbluth and Rosenbluth 1955), which is of great importance in chemistry and
biology (Siepmann and Frenkel 1992; Grassberger 1997). Sequential Monte Carlo has been studied
intensively in the past two decades and applied broadly to high-dimensional statistical inference,
signal processing, biology and many other fields (Liu and Chen 1998; Doucet et al. 2001). Through
building up the sampling (trial) distribution sequentially, a set of weighted samples can be used
to approximate the high-dimensional target distribution, or at least a certain aspect of it. The
state-space model is a particularly interesting dynamic system that have been treated with sequen-
tial Monte Carlo. The model is governed by the hidden Markovian state equation and the noisy

∗These authors contributed equally and are listed in alphabetical order.

1



observation equation. The hidden state, for instance, can represent the underlying volatility in an
economical time series (Taylor 2008; Gatheral 2011), or the location in a terrain navigation problem
(Bergman et al. 1999; Bergman 2001; Gustafsson et al. 2002), or many others. In such models,
characterizing the distribution of the hidden state is known as the filtering problem; and sequential
Monte Carlo is more commonly known as the particle filter in this context (Gordon et al. 1993).

Roughly speaking, sequential Monte Carlo is built based on sequential importance sampling,
which recursively simulates a future state and reweighs the sampling path, with additional resam-
pling steps (Liu and Chen 1998). In a vanilla sequential importance sampling procedure, such as
sequential imputation (Kong et al. 1994), weight degeneracy arises as an inevitable problem. Since
the importance weights are updated recursively at each step, stochastically most of the total weights
will concentrate on a very few samples, leading to exponentially increasing variance (Kong et al.
1994). One effective strategy to avoid weight degeneracy is to resample from the current samples
according to the corresponding weights. Resampling alone does not provide any information for
estimation at the current step, but only introduces additional randomness. The main intuition
behind resampling is that particles with small weights are deemed less hopeful and thus discarded
so as to save resources in order to explore regions that may be more promising for the future (Liu
and Chen 1995). Incidentally, in the bootstrap filter of Gordon et al. (1993), every forward simula-
tion step is followed immediately with a resampling step without investigating its advantages and
disadvantages. Liu and Chen (1995) provided an early attempt at analyzing resampling (termed as
rejuvenation in that article) for statistical models, providing some useful insights, but was short of
a rigorous theory.

Each iteration of sequential Monte Carlo consists of two steps: forward-sampling (or more
intuitively, growth) and resampling. In the resampling step, we rejuvenate all the weights where
samples with higher weights are more likely to be retained. In the growth step, we generate samples
from the trial distribution and calculate the corresponding weight for each sample. Intuitively, the
trial distribution should be as close to the target distribution as possible so as to explore the relevant
part of the sample space.

There are various means to resample from a collection of weighted particles. Informally, one
would like to minimize the “resampling randomness” over a certain class of valid resampling schemes.
This goal is closely related to the balanced sampling design in survey sampling (Tillé 2006, Chap-
ter 8), which seeks to reduce the sampling variance using auxiliary variables. The naïvest way to
resample is called bootstrap resampling or multinomial resampling (Gordon et al. 1993), where the
new particles are sampled from independent and identically distributed (i.i.d.) multinomial distribu-
tions based on the original particle weights. Residual resampling (Liu and Chen 1998) and stratified
resampling (Kitagawa 1996) are two more popular resampling schemes in practice. These methods
have also been studied and used in scientific fields outside of statistics under different names of
resampling (e.g., parent selection for genetic algorithms (Brindle 1980, Chapter 4.2) and stochas-
tic reconfiguration in physics (Gubernatis et al. 2016, Chapter 10.3)). Douc and Cappé (2005)
compared the above resampling schemes and concluded that residual resampling and stratified re-
sampling always have a smaller conditional variance than multinomial resampling does. For discrete
state-spaces, the optimal resampling method (Fearnhead and Clifford 2003) offers an interesting way
of diversified sampling. Besides these traditional resampling schemes, Reich (2013) proposed opti-
mal transport resampling, an approach borrowing ideas from transportation theory. However, there
has been no theoretical guarantee for the optimal transport resampling (aside from its validity), to
the best of our knowledge. Recently, Gerber et al. (2019) showed that stratified resampling after
ordering the particles by the Hilbert space-filling curve has a relatively low conditional variance in
some cases, which is also one of our interests in this article.

Sequential quasi-Monte Carlo introduced in Gerber and Chopin (2015) is a class of algorithms
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taking advantage of Hilbert curve resampling and quasi-Monte Carlo point sets. By constructing
a low-discrepancy set on a product space, sequential quasi-Monte Carlo combines resampling and
growth and numerically outperforms sequential Monte Carlo significantly. Theoretically, however,
the convergence rate in terms of the mean squared error has only been shown to be o(n−1) for
certain low-discrepancy sets. It is naturally believed that the rate could be improved and should
depend on the dimension d.

We focus on theoretical properties of various resampling schemes and sequential quasi-Monte
Carlo in this paper. We show that, in one dimensional cases, optimal transport resampling is
equivalent to stratified resampling on the sorted particles, which minimizes the resampling variance
as well as the expected squared energy distance between the empirical distributions before and
after resampling. In d dimensions, a natural generalization of ordered stratified sampling in one
dimension is Hilbert curve resampling (Gerber et al. 2019), which is stratified resampling on particles
sorted using the Hilbert space-filling curve. We prove that its resampling variance is of the order
O(m−(1+2/d)) when d > 1, where m is the number of resampled particles. This improves the
original rate O(m−(1+1/d)). We show that the order cannot be further improved by resorting to
a different ordering rule, confirming a conjecture in Gerber et al. (2019). We also derive a bound
on the Wasserstein distance between the empirical distributions before and after Hilbert curve
resampling. Based on the theoretical results on resampling, we further design a low-discrepancy
set for sequential quasi-Monte Carlo and prove that the mean squared error under this set is of the
order O(n−1−[4/d(d+4)]) for d > 1. This improves the original rate o(n−1). We believe this low-
discrepancy set captures some key intuitions of quasi-Monte Carlo and the tools can be modified to
analyze other low-discrepancy sets as well.

The rest of the article is organized as follows. We provide some preliminaries, including relevant
notations, definitions, and formulations, in Section 2. In Section 3, we prove the equivalence of
several aforementioned resampling approaches in the one dimensional case. In Section 4, we give
upper bounds for the resampling error of Hilbert curve resampling in terms of both variance and
Wasserstein distance. In Section 5, we focus on exploring sequential quasi-Monte Carlo and derive
a better convergence rate based on the theoretical results in Section 4. We wrap up the paper in
Section 6 with some important open problems. All proofs are deferred to the supplement.

2 Preliminaries

2.1 Notations

We use superscript to denote the temporal notation (i.e., the step or iteration) and subscript for
the sample index; the temporal notations are omitted for the sake of clarity whenever there is no
confusion. The target distribution is denoted as π(x), while g(x) denotes the trial distribution in
the sense of importance sampling, which is constructed in a forward sampling (growth) fashion in
sequential Monte Carlo. When written without a subscript, X and W mean (X1, X2, . . . , Xn) and
(W1,W2, . . . ,Wn) for an appropriate n, and the set of tuples (Xj ,Wj)

n
j=1 refers to a set of weighted

samples, where Wj ≥ 0, j = 1, 2, · · · , n. Unless stated otherwise, the Wj ’s are normalized so that∑n
j=1Wj = 1. We use X̃1, X̃2, · · · , X̃m to denote the equally weighed samples after resampling,

so that in some sense,
∑m

i=1m
−1δX̃i

≈
∑n

j=1WjδXj , where δx denotes the Dirac measure at point
x. If Xj ∈ X for j = 1, 2, . . . , n, we use X n to denote the space in which X lives. We use
Z ∼ Multinomial(1, y, p) to mean that P(Z = yi) = pi, where p is a probability vector. We write
md(·) for the Lebesgue measure in d dimensions. The standard L2 norm is denoted as ‖ · ‖. For
a vector a, diag(a) represents the diagonal matrix with the ith diagonal element being ai. For a
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real number u, buc denotes the greatest integer less than or equal to u. The symbol i.i.d.∼ denotes
sampling independent and identically distributed random variables.

2.2 Sequential Monte Carlo

To set up future analyses, we here describe a generic sequential Monte Carlo procedure. Let the
target distribution π(x) be supported in a T -dimensional space, which can be viewed as a joint
distribution of a sequence of variables, say π(x(1:T )). We can sample sequentially from a sequence of
distributions {πt(x(1:t))}Tt=1, where πT = π. A generic sequential Monte Carlo algorithm is outlined
in Algorithm 1.
Algorithm 1: Sequential importance sampling with resampling.
Input: A sequence of target distributions {πt(x(1:t))}Tt=1

Output: weighted particles (X
(1:T )
i ,W

(T )
i )1≤i≤n

At time t = 1,
Draw X

(1)
1 , · · · , X(1)

n from g1(X(1)).
Calculate and normalize the importance weight: W (1)

j ∝ π1(X
(1)
j )/g1(X

(1)
j ).

Resample X̃(1)
1 , X̃

(1)
2 , · · · , X̃(1)

n from X
(1)
1 , · · · , X(1)

n with probabilities W (1)
1 , · · · ,W (1)

n ,
and reweight the samples X̃(1)

1 , X̃
(1)
2 , · · · , X̃(1)

n equally with 1/n.
Let X(1)

j = X̃
(1)
j for j = 1, 2, . . . , n.

for t = 2 to T do
Draw X

(t)
j from gt(X

(t) | X(1:t−1)
j ) for j = 1, 2, . . . , n conditionally independently.

Calculate and normalize the importance weight:

W
(t)
j ∝

πt

(
X

(1:t)
j

)
πt−1

(
X

(1:t−1)
j

)
gt

(
X

(t)
j | X

(1:t−1)
j

)
if t < T then

Resample X̃(1:t)
1 , X̃

(1:t)
2 , · · · , X̃(1:t)

n from X
(1:t)
1 , · · · , X(1:t)

n with probabilities
W

(t)
1 , · · · ,W (t)

n , and reweight the samples X̃(1:t)
1 , X̃

(1:t)
2 , · · · , X̃(1:t)

n equally with 1/n.
Let X(1:t)

j = X̃
(1:t)
j .

end
end
Return (X

(1:T )
i ,W

(T )
i )1≤i≤n

In the special case of a state-space model, we have

Y (t) |
(
X(1:t) = x(1:t), Y (1:t−1)

)
∼ py(· | x(t)),

X(t) |
(
X(1:t−1) = x(1:t−1), Y (1:t−1)

)
∼ px(· | x(t−1)), t = 2, · · · , T,

(1)

where px and py represent distributions as well as density functions, X(1), · · · , X(T ) are unobserved
hidden states, and Y (1), · · · , Y (T ) are the observed sequence of variables. The filtering problem
focuses on the target distribution

πT (x(1:T )) ∝
T∏
t=1

[
px(x(t) | x(t−1))py(y

(t) | x(t))
]
.
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W1 = 0.3 W2 = 0.3 W3 = 0.1 W4 = 0.2 W5 = 0.1
Figure 1: Illustration of stratified resampling. First line up the weights, then divide the interval
into m equal parts, uniformly choose one point from each subinterval and record in which weight’s
region it lands. In the presented example where m = 4, n = 5, particles 1 and 5 are resampled once,
particle 2 is resampled twice and particles 3 and 4 are discarded.

While implementing Algorithm 1 in such a state-space model, the trial distribution at each step can
be naturally (or naïvely) chosen as gt(x(t) | x(t−1)) = px(x(t) | x(t−1)), and thus the corresponding
importance weight can be updated as w(t) ∝ w(t−1)py(y

(t) | x(t)).

2.3 Resampling matrix

Suppose we have weighted particles (Wj , Xj)
n
j=1 with weights summing to one. Without loss of

generality, we assume that the Xj ’s are distinct since we can always merge particles with identical
values and add up their weights. Consider the family of resampling methods indexed by a matrix
Pm×n, where the new unweighted particles (X̃i)

m
i=1 are sampled independently from

X̃i | X,W ∼ Multinomial(1, X, (pi1, pi2, . . . , pin)),

and P has non-negative entries with
∑m

i=1 pij = mWj and
∑n

j=1 pij = 1. Note that permutating
P ’s rows does not change the resampling scheme. It can be easily verified that such a resampling
strategy is unbiased, which means that for any φ we have

E

[
1

m

m∑
i=1

φ(X̃i) | X,W

]
=

1

m

m∑
i=1

m∑
j=1

pijφ(Xj) =

n∑
j=1

Wjφ(Xj).

We use Pm,W to denote the set of all matrices of this form and the set of all corresponding resampling
methods, with slight abuse of notation. We call this collection of resampling methods matrix
resampling methods, which also appears in Reich (2013) and Webber (2019). The use of resampling
matrices appeared at least as early as in Hu et al. (2008) and also in many other works (e.g., Reich
(2013); Whiteley et al. (2016); Webber (2019)). Most available resampling methods, as listed below,
fit into this framework.

In multinomial resampling, each X̃i is an independent and identically distributed sample from
the multinomial distribution Multinomial(1, X,W ). This corresponds to pij = Wj for i = 1, . . . ,m,
j = 1, . . . , n, as shown in Figure 2(a). In stratified resampling, we let Ui ∼ Unif ((i− 1)/m, i/m],
independently for i = 1, . . . ,m, and let X̃i = Xj if Ui ∈

(∑j−1
k=1Wk,

∑j
k=1Wk

]
. See Figure 1 for an

illustration. Stratified resampling corresponds to a staircase matrix; see Figure 2(b) for an example
and Definition 1 for a formal definition. In residual resampling, we first make bmWjc copies of Xj

for all j = 1, . . . , n; then, apply multinomial or stratified resampling (corresponding to Figure 2(c)
and (d), respectively) for drawing the rest m−

∑n
j=1bmWjc particles with W̃j ∝ mWj − bmWjc.

2.4 Criteria for choosing resampling schemes

To choose from the set of valid resampling procedures, we need a measure of goodness of a resampling
procedure. Let P =

∑n
j=1WjδXj and P̃ =

∑m
i=1m

−1δX̃i
. It is natural to favor a stable process,
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0.3 0.3 0.1 0.2 0.1
0.3 0.3 0.1 0.2 0.1
0.3 0.3 0.1 0.2 0.1
0.3 0.3 0.1 0.2 0.1


(a) Multinomial Resampling


1

0.2 0.8
0.4 0.4 0.2

0.6 0.4


(b) Stratified Resampling

1
1

0.1 0.1 0.2 0.4 0.2
0.1 0.1 0.2 0.4 0.2


(c) Multinomial Residual Resampling


1

1
0.2 0.2 0.4 0.2

0.6 0.4


(d) Stratified Residual Resampling

Figure 2: Examples of resampling matrices with m = 4 and n = 5, and particle weights
(W1,W2,W3,W4,W5) = (0.3, 0.3, 0.1, 0.2, 0.1).

where P̃ is close to P. Explicitly, we want to minimize E[`(P, P̃) | X,W ] for a loss function `.
For example, we can pick `(P, P̃) to be (EP[φ(X)] − EP̃[φ(X)])2 and use the conditional variance
Var[m−1

∑m
i=1 φ(X̃i) | X,W ] as a measure of goodness. We can also choose ` to be the squared

energy distance, which has the advantage of explicit expression and the property that the energy
distance is zero if and only if two distributions are the same. The energy distance (Rizzo and Székely
2016) between distributions P1 and P2 is defined as the square root of

D2(P1,P2) = 2E[‖Y1 − Y2‖]− E[‖Y1 − Y ′1‖]− E[‖Y2 − Y ′2‖],

where Y1 and Y ′1 follow P1, Y2 and Y ′2 follow P2, and the four random variables are mutually
independent. Another example is the Wasserstein distance, defined between distributions P1 and
P2 as

Wp(P1,P2) =

(
inf

γ∈Γ(P1,P2)
E(Y1,Y2)∼γ [‖Y1 − Y2‖p]

)1/p

, p ≥ 1,

where Γ(P1,P2) denotes all probability measures that have P1 and P2 as their marginal distributions.
In Section 3, we prove that minimizing the conditional variance is equivalent to minimizing

the expected squared energy distance in one dimensional cases, both of which can be achieved by
ordered stratified resampling (i.e., stratified resampling on the sorted particles). In Section 4, we
give upper bounds for conditional variance and expected Wasserstein distance for ordered stratified
resampling, where the particles are sorted according to the Hilbert curve in multiple dimensions.

3 Optimal resampling in one dimension

A good resampling scheme should ideally incorporate the information of the state values Xj ’s, since
the loss function usually depends on them. In this section, we show that, by incorporating the Xj ’s
value information, the stratified resampling method minimizes several objectives proposed in the
literature. Note that in this section, we consider the case where the particles take values in a one
dimensional space. For example, resampling in a state-space model where the hidden state at each
step is one-dimensional. In this case, we can focus on the last dimension of each particle, since the
other components will not affect the future.
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To study the stratified resampling matrix, we first define the staircase matrix, which is the same
as a stratified resampling matrix as we show in Proposition 1. This will help with understanding
why ordering the states before applying stratified resampling can lower the resampling variance.

Definition 1 (Staircase matrix). We call a matrix P staircase matrix if the following conditions
are satisfied:

(1) In each row and column of P , non-zero entries are consecutive. In other words, if pij1 6= 0
and pij2 6= 0 for j1 < j2, then for all j1 < j < j2, pij 6= 0, and similarly for the columns.

(2) For any quadruplet (i, j, k, l) such that i < k, j < l, at least one of pil and pkj is 0.

Proposition 1. Any stratified resampling scheme corresponds to a unique staircase matrix up to
row permutations.

A staircase matrix has at most n+m− 1 non-negative entries and has a clear spatial structure.
The non-negative entries form a path (allowing diagonal moves) from the top left entry to the
bottom right entry.

Lemma 1. For m,n > 2, there can only be one unique m by n staircase matrix that has non-negative
entries and satisfies:

n∑
j=1

pij = ri > 0 and
m∑
i=1

pij = cj > 0

By Lemma 1, the staircase resampling matrix is unique given the weights for each particle. Then
we can define a stratified resampling matrix.

Definition 2 (Stratified resampling matrix). We call a matrix P SR
m,W ∈ Pm,W the stratified resam-

pling matrix of a set of weighted particles (Xj ,Wj)
n
j=1 if P SR

m,W can be converted to a staircase matrix
after some row permutation.

Theorem 1. For particles (Xj ,Wj)
n
j=1 with X1 < X2 < · · ·Xn, resampling defined by P SR

m,W

minimizes the following objectives:

(i) The conditional variance VarP

[
1
m

∑m
i=1 X̃i | X,W

]
.

(ii) The expected squared energy distance EP
[
D2
(∑m

i=1m
−1δX̃i

,
∑n

j=1WjδXj

)]
.

(iii) The earth mover distance
∑m

i=1

∑n
j=1 pij`(Yi−Xj) where ell is a strictly convex function, and

Y1 < · · · < Ym is any given sequence of ascending numbers.

Remark 1. If the goal is to estimate E[φ(X)], then ordering the states by function φ and then
applying stratified resampling gives the minimum variance. This result also appeared in Webber
(2019), where it was proved using an optimization argument. Our proof uses a similar idea and
directly shows that when the resampling variance is minimized, the resampling matrix must be a
staircase matrix and corresponds to ordered stratified resampling. A similar approach is used to
prove (iii) as well.
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4 Error of ordered stratified resampling

In this section, we analyze the error induced by ordered stratified resampling.

Theorem 2. Suppose one-dimensional particles (X̃i)
m
i=1 is resampled with ordered stratified resam-

pling from (Xj ,Wj)
n
j=1, then for any Lipschitz function φ with coefficient Lφ,

Var

[
1

m

m∑
i=1

φ(X̃i) | X,W

]
≤

L2
φ

4m2
( max
1≤i≤n

Xi − min
1≤i≤n

Xi)
2.

We here provide some intuition behind ordered stratified sampling. Since the new particles are
sampled independently, we only need to make sure that each new particle brings in little randomness.
It is easy to see from the staircase structure of the resampling matrix that each X̃i takes value in a
sequence of consecutive Xj ’s. Since the original particles have been ordered, this sequence of Xj ’s
are close to each other in the space. Together with the fact that φ is Lipschitz, we see that for each
i, φ(X̃i) is bounded in a small region.

In multiple dimensions, it has been noticed that the Hilbert space-filling curve (Hilbert 1935) can
help lower the sampling variance (Gerber and Chopin 2015; He and Owen 2016; Gerber et al. 2019).
In particular, Gerber et al. (2019) used the Hilbert curve in the context of resampling. They showed
that the resampling variance for Lipschitz functions withm particles is of order O(m−(1+1/d)), where
d is the number of dimensions. We improve this bound to O(m−(1+2/d)) and show that this new rate
is the best for ordered stratified resampling schemes with any ordering, as conjectured in Gerber
et al. (2019).

A d-dimensional Hilbert curve is a continuous function H : [0, 1] → [0, 1]d. Its most important
properties relevant to our tasks are as follows:

(i) H is surjective.

(ii) H is Hölder continuous with exponent 1/d (He and Owen 2016):

‖H(x)−H(y)‖ ≤ 2
√
d+ 3|x− y|1/d.

(iii) H is measure-preserving. For each Lebesgue measurable I ⊆ [0, 1], m1(I) = md(H(I)).

The Hilbert curve is defined as the limit of a sequence of curves; see Figure 3 for an illustration in
two and three dimensions. Many software packages can efficiently convert between x and H(x) (e.g.,
the Python package hilbertcurve). In practice, the computation cost of this approximation is quite
minimal compared to the sampling part. We omit here the rigorous definition of Hilbert curves and
refer interested readers to Sagan (2012). For the purpose of resampling, the most relevant property
is the Hölder continuity. This ensures that H(I), the image of an interval I ⊆ [0, 1], has its diameter
bounded above by 2

√
d+ 3 ·m1(I)1/d. As an illustration, we plot the images of H([i/k, (i+ 1)/k])

for i = 0, 1, . . . , k − 1 and k = 5, 6, 7, 8 in Figure 4.
Now we formally introduce the Hilbert curve resampling first proposed in Gerber et al. (2019).

Proposition 2 in Gerber et al. (2019) says that there exists a one-to-one Borel measurable function
h : [0, 1]d → [0, 1] such that H(h(x)) = x for all x ∈ [0, 1]d. The resampling procedure is to first
sort the particles so that (h(Xj))

n
j=1 is in ascending order, and then apply stratified resampling.

Note that in one dimension this reduces to ordered stratified sampling. Following the intuition in
the one-dimensional case, each new particle is bounded in a small region in [0, 1]d due to the Hölder
continuity of H, which limits the variability of X̃i. See Figure 5 for an illustration. Theorem 3
gives an upper bound on the resampling variance, which is an improved bound compared to the one
reported in Theorem 5 in Gerber et al. (2019).
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(a) H2,1 (b) H2,2 (c) H2,3 (d) H2,4

(e) H3,1 (f) H3,2 (g) H3,3 (h) H3,4

Figure 3: Hilbert curves of the first four orders in two and three dimensions.

(a) Five parts. (b) Six parts. (c) Seven parts. (d) Eight parts.

Figure 4: The unit square divided into several parts with equal areas based on the Hilbert curve.

Theorem 3. Let φ : [0, 1]d → [0, 1], d > 1, be a Lipschitz function with Lipschitz coefficient Lφ. If
(Xj)

n
j=1 is sorted in an ascending order by the value of h(Xj), then stratified sampling satisfies

VarHC-strat

[
1

m

m∑
i=1

φ(X̃i) | X,W

]
≤

(d+ 3)L2
φ

m1+2/d
.

Remark 2. The intuition behind Theorems 2 and 3 is the same: in stratified resampling, the
variance of each individual resampled particle is controlled because it is sampled from a set of particles
spatially close to each other. In fact, one can easily generalize Theorem 3 to the Hölder function
case: if |φ(x)− φ(y)| ≤ Lφ‖x− y‖β, β ∈ (0, 1], then

VarHC-strat

[
1

m

m∑
i=1

φ(X̃i) | X,W

]
≤

(d+ 3)L2
φ

m1+2β/d
.

Remark 3. The exponent 1+2/d in the theorem improves the original rate 1+1/d shown in Gerber
et al. (2019). It is conjectured in Gerber et al. (2019) that the Hilbert curve is the best choice for
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(a) n = 200 particles resampled into m = 20. (b) n = 200 particles resampled into m = 30.

Figure 5: The unit square divided into m parts based on the Hilbert curve and the particle weights.
Size of the point represents their particle weight. Each region contains particles with weights
summing to one (neighbouring regions divide weights of the particles on the boundary).

ordering the particles. For clarity, we take the Lipschitz coefficient to be 1 and m = n. Define the
space of valid probability vector as

∆n =

(w1, w2, . . . , wn) ∈ Rn :
n∑
j=1

wj = 1, wi ≥ 0 for all 1 ≤ i ≤ n

 .

Theorem 3 implies that

lim sup
n→∞

n1+ 2
d sup
X∈[0,1]d×n

sup
W∈∆n

sup
φ∈Φd

VarHC-strat

[
1

n

n∑
i=1

φ(X̃i) | X,W

]
≤ d+ 3,

where Φd denotes the set of 1-Lipschitz functions from [0, 1]d to [0, 1], d > 1. For other space-filling
curves (which may be cheaper to implement) with a different Hölder exponent, similar results hold
with an exponent different from 1 + 2/d. However, we show in Proposition 2 that no other ordering
rule can improve the exponent 1 + 2/d.

Proposition 2. Let Φd be the set of 1-Lipschitz functions from [0, 1]d to [0, 1], d > 1. Let o(x) :
[0, 1]d → [0, 1] be a one-to-one function. The stratified sampling procedure after ordering particles
by o satisfies

lim sup
n→∞

n1+ 2
d sup
X∈[0,1]d×n

sup
W∈∆n

sup
φ∈Φd

Varo-strat

[
1

n

n∑
i=1

φ(X̃i) | X,W

]
≥ 1

27d
.

Hilbert resampling is also stable in terms of the Wasserstein distance, as stated in Theorem 4.
The Wasserstein distance is arguably a more intuitive notion to measure the stability of a resampling
algorithm than conditional variance. When p ≤ d, Theorem 4 is intuitively optimal, since m balls
with radius of the order 1/m1/d are needed to cover the space.
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Theorem 4. Under d-dimensional Hilbert curve resampling, d ≥ 1, the Wasserstein distanceWp be-
tween P̃ =

∑m
i=1m

−1δX̃i
and P =

∑n
j=1WjδXj is almost surely upper bounded by 2

√
d+ 3m

− 1
max(p,d) .

It is worthwhile to point out that in practice, depending on the targeted quantities of interest,
there might exist an effective dimension lower than d. For example, if we only care about functions
of the first d̃ coordinates, we should sort the particles using the d̃-dimensional Hilbert curve and
the first d̃ coordinates of the particles; if the particles concentrate on a d̃-dimensional subspace, we
should project the particles to this subspace and sort the particles using the d̃-dimensional Hilbert
curve.

5 Mean square error of sequential quasi-Monte Carlo

5.1 Sequential quasi-Monte Carlo

In this section, we discuss how to utilize the previous results to obtain a new convergence rate for
the sequential quasi-Monte Carlo proposed in Gerber and Chopin (2015), which can be structured
identically as Algorithm 1 with the same weight computation, but with different resampling and
growth steps.

Suppose there exists function Γ1(·) and Γt(·, ·) for 2 ≤ t ≤ T such that Γ1(V ) ∼ g1(·) and
Γt(X,V ) | X ∼ gt(· | X), where V ∼ Unif([0, 1]d) is independent of X. Assume at the beginning
of step t, we have weighted samples (X

(1:t−1)
j ,W

(t−1)
j )nj=1, which have been ordered by the Hilbert

mapping h so that h(X
(t−1)
1 ) ≤ · · · ≤ h(X

(t−1)
n ). Recall that Hilbert-curve stratified sampling can

then be implemented by independently sampling Ui ∼ Unif([(i − 1)/n, i/n]) for 1 ≤ i ≤ n and
let X̃(t−1)

i = X
(t−1)
σ(Ui,W ), where σ(Ui,W ) = j if

∑j−1
k=1Wk < Ui ≤

∑j
k=1Wk. Suppose we have a

low-discrepancy set U (t) = {(ui, vi) : ui ∈ [0, 1], vi ∈ [0, 1]d, 1 ≤ i ≤ n}, labeled in the way that
u1:n are in ascending order. Intuitively speaking, a low-discrepancy set is a set that spreads evenly
in [0, 1]1+d; see Gerber and Chopin (2015) for a more detailed discussion. Sequential quasi-Monte
Carlo combines resampling and growth by defining

X
(t)
j =

Γ1(vj), t = 1,

Γt(X
(t−1)

σ(uj ,W
(t−1)
1:n )

, vj), 2 ≤ t ≤ T, , 1 ≤ j ≤ n.

If the set U (t) contains n independent samples from Unif([0, 1]1+d), then we recover Algorithm 1
with Hilbert resampling. It was shown in Gerber and Chopin (2015) that some choice of U (t) (e.g.,
the nested scrambled Sobol sequence) can achieve a mean square error of order o(n−1). Next, we
will show that a specifically chosen set can achieve O(n−1−4/[d(d+4)]).

5.2 Stratified multiple-descendant growth

The intuition behind Sequential quasi-Monte Carlo is that the consecutive resampled particles
(X

(t)

σ(uj ,W
(t)
1:n)

)bj=a are close in space due to the Hölder continuity of the Hilbert curve, so if va:b

are more spread out, the space can be probed more consistently by stratified growth. The main dif-
ficulty of quantifying the convergence rate of Sequential quasi-Monte Carlo lies at the deterministic
or semi-deterministic nature of the set U (t). We exploit this intuition and construct a specific set
that enables more careful convergence analysis.
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(a) Sobol’ sequence. (b) Stratified multiple-descendant growth. (c) Independent sampling.

Figure 6: Comparison of low-discrepancy sets on [0, 1]2 (n = 50, k = 10, r = 5).

Let n = sr, and let Uk ∼ Unif[(k − 1)/s, k/s] be independent for 1 ≤ k ≤ s. Let V(k−1)s+` =

H(Ṽk`), where H is the d-dimensional Hilbert curve and Ṽk` ∼ Unif[(` − 1)/r, `/r], independently
for 1 ≤ k ≤ s, 1 ≤ ` ≤ r. We define U (t)

SMG = {(Ubi/rc+1, Vi) : 1 ≤ i ≤ n}. Here, SMG stands
for stratified multiple-descendant growth, because we essentially resample s particles, and let each
particle have r descendants in a stratified manner. This idea is also closely related to the optimal
sampling in the discrete space (Fearnhead and Clifford 2003). Figure 6 compares the discrepancy
set generated by stratified multiple-descendant growth and two other approaches.

We focus on the mean square error of the estimation of any proper function φ in a state-space
model, which is defined as

MSEt(φ) = E

[∑n
j=1W

(t)
j φ(X

(t)
j )∑n

j=1W
(t)
j

−
∫
πt(x

(1:t))φ(x(t))dx(1:t)

]2

.

The mean square error can be decomposed into the squared bias and variance. The following
theorem gives a bound for each one, respectively.

Theorem 5. In a state-space model (1), we let gt(x(t) | x(t−1)) = px((x(t) | x(t−1)) and run
sequential quasi-Monte Carlo with U (t)

SMG. Assume that each X(t) falls in a compact set, assuming to
be X = [0, 1]d without loss of generality. Suppose (X

(t)
j ,W

(t)
j )1≤j≤n are the weighted samples at time

t, where the number of multiple descendants r = cn2/(d+4) and particle dimension d ≥ 2. Assume
that, for any t,

(i) a(v) = πt−1 (X)−1 gt (v | X)−1 πt ((X, v)), b(v) = πt−1 ((X, v))−1 πt ((X, v, u)), c(v) = Γt(X, v),
and Γ1(v) are bounded in [−M,M ] and L-Lipschitz.

(ii) πt−1 ((X, v))−1 ∫
X πt ((X, v, u)) du is lower bounded by e > 0.

Then, for any L-Lipschitz φ bounded in [−M,M ],∣∣∣∣∣E
[∑n

j=1W
(t)
j φ(X

(t)
j )∑n

j=1W
(t)
j

]
−
∫
πt(x

(1:t))φ(x(t))dx(1:t)

∣∣∣∣∣ = O(n
− 1

2
− 2

d(d+4) ),

Var

[∑n
j=1W

(t)
j φ(X

(t)
j )∑n

j=1W
(t)
j

]
= O(n

−1− 4
d(d+4) )

for all t, where the constants in O depend only on M , L, e and t.
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Remark 4. There are different ways to map generally supported random vectors into [0, 1]d. Here
we recommend the inverse transform method proposed in Gerber and Chopin (2015). One significant
advantage is that the spatial structure of the particles would be preserved to a large extent by the
method, which is important in the following Hilbert mapping. If the random vector is normally
distributed, whitening the data is equivalent to the inverse transform method.

In dimension d = 2, our simulations in a stochastic volatility model seem to suggest that the rate
is rather tight. The results are shown in Figure 7 and the model details are included in Appendix B.
We can see that the empirical slope gets closer to the slope −4/3 given by Theorem 5 as n gets
larger.
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Figure 7: The MSE versus the number of particles in logarithmic scales. The dashed line is a
reference line with a slope of −4/3, the rate shown by our theory.

6 Discussion

We have discussed how one might improve the performance of SMC and SQMC via stratified
sampling and multi-descendent growth. The matrix resampling framework in Section 2.3 can be
generalized to allow resampled particles to carry unequal weights (such as in the optimal resampling
of Fearnhead and Clifford (2003)). Let q1:m satisfy qi ≥ 0 and

∑m
i=1 qi = 1. We can resample

according to a matrix P = (pij)m×n with non-negative entries where
∑n

j=1 pij = 1 and
∑m

i=1 qipij =
Wj by conditionally independent sampling:

X∗i | X,W ∼ Multinomial(1, X, (pi1, pi2, . . . , pin)), i = 1, 2, . . . ,m,

and then assigning X∗i the weight qi. We focused on the case with qi = 1/m in this article, but by
choosing unequal qi’s, one may further reduce the resampling variance at the cost of less balanced
weights. It is unclear what an optimal trade-off might be.

When the resampled particles are not independent from each other conditional on the origi-
nal particles, the resampling method cannot be represented as a resampling matrix. Systematic
resampling (Carpenter et al. 1999) is such an example. All criteria mentioned in Section 2.4 are

13



also well-defined for non-matrix resampling. It would be interesting to study a broader class of
resampling methods including some non-matrix resampling schemes.

Finally, it will be interesting to see if the tools in this paper can guide the choice of low-
discrepancy sets or be generalized to analyze other existing low-discrepancy sets more commonly
used in practice and show they achieve the same or better convergence rates. In fact, Gerber and
Chopin (2015) has shown by simulations that SQMC can significantly outperform SMC. We believe
that SQMC with the Sobol sequence may have a better performance than multiple-descendent
growth in practice based on our preliminary simulations. It was conjectured that the optimal
convergence rate of SQMC can reach O(n−1−2/d) (Gerber and Chopin 2015).
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A Proofs

Proof of Lemma 1. Suppose P = (pij)m×n and Q = (qij)m×n are both eligible staircase matrices.
If p11 6= q11, without loss of generality, assume p11 < q11, then

∑n
j=2 p1j = r1 − p11 > r1 − q11 ≥ 0.

By condition (1) in the definition of staircase matrix, p12 > 0. This actually implies that pi1 = 0
for all i > 1. However, p11 =

∑m
i=1 pi1 =

∑m
i=1 qi1 ≥ q11 > p11, which is a contradiction.

Then consider p12 and q12, suppose 0 ≤ p12 < q12, then
∑n

j=3 = p1j = r1 − p11 − p12 >
r1− q11− q12 ≥ 0. By condition (1) in the definition of staircase matrix, p13 > 0. This implies that
pi2 = 0 for all i > 1. Similarly, p12 =

∑m
i=1 pi2 =

∑m
i=1 qi1 ≥ q12 > p12, which is a contradiction.

Similarly, we can prove that p1j = q1j for each j = 1, 2, · · · , n. By induction, P = Q.

Proof of Theorem 1. First, we prove the following lemma.

Lemma 2. Suppose P is an m by n matrix with m,n > 2,
∑n

i=1 pij > 0 for all j, and
∑n

j=1 pij > 0
for all i, then in Definition 1, (2) implies (1).

Proof of Lemma 2. We consider the rows, and the same proof applies to the columns. Suppose
pij1 6= 0 and pij2 6= 0, j1 < j2, for j such that j1 < j < j2, if pij = 0, because

∑
s=1 psj > 0, there is

a k such that pkj > 0. If k < i, then (k, j1, i, j) is an ineligible quadruplet that contradicts (2). If
k > i, then (i, j, k, j2) is an ineligible quadruplet that contradicts (2).

(i) Conditional variance.

Suppose P maximizes t(P ) = X>P>PX and
∑n

j=1 pijXj is ascending with respect to i (note
that permutation of rows in P doesn’t change the value of X>P>PX). Consider a quadruplet
(i, j, k, l) such that i < k and j < l. If pil > 0 and pkj > 0, set α = min{pil, pkj} > 0, then
update the entries of P as:

pij ← pij + α pil ← pil − α
pkj ← pkj − α pkl ← pkl + α

We name the updated weight matrix as P ′, then

t(P ′)− t(P ) = (
n∑
s=1

Xspis + α(Xj −Xl))
2 + (

n∑
s=1

Xspks + α(−Xj +Xl))
2 −

n∑
s=1

(Xspis)
2 −

n∑
s=1

(Xspks)
2

= 2α2(Xj −Xl)
2 + 2α(Xj −Xl)(

n∑
s=1

Xspis −
n∑
s=1

Xspks) > 0,

since Xj < Xl and
∑n

s=1Xspis ≤
∑n

s=1Xspks. This would contradict the fact that P maxi-
mizes t(P ). Hence, by Lemma 2, P is a staircase matrix.

(ii) Expected squared energy distance.

Note that the squared energy distance admits an explicit expression in one dimension. By
some algebra, we find that Lemma 3 enables us to convert the problem of minimizing expected
squared energy distance to a simpler problem.

Lemma 3. In the setting of Theorem 1, the solution to the following optimization problems
minimizes the expected squared energy distance:

arg max
P∈Pm,W

n−1∑
k=1

(Xk+1 −Xk)

m∑
i=1

 k∑
j=1

pij

2 .
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Back to the proof the theorem, let P SR
m,W = (p∗ij) be the ordered stratified resampling matrix.

We will prove that for any k and any P = (pij) ∈ Pm,W ,

m∑
i=1

 k∑
j=1

p∗ij

2

≥
m∑
i=1

 k∑
j=1

pij

2

.

The result then follows from Lemma 3. Since
∑m

i=1

(∑k
j=1 pij

)
= m

∑k
j=1Wj and 0 ≤∑k

j=1 pij ≤ 1, the sum of squares attains its maximum when [m
∑k

j=1Wj ] of them are 1, one
of them is m

∑k
j=1Wj − [m

∑k
j=1Wj ], and the rest are 0. It can be easily checked that (p∗ij)

satisfies this condition and thus solves the optimization problem.

Proof of Lemma 3. Let d(P, P̃) =
∫∞
−∞(FP(x)−FP̃(x))2 dx, which is equal to half the squared

energy distance (Székely 2003)

E|X − Y | − E|X −X ′|+ E|Y − Y ′|
2

,

with X,X ′, Y, Y ′ independent, X,X ′ coming from P and Y, Y ′ coming from P̃. Since the Xj ’s
are ordered as X1 < X2 < · · · < Xn, we have

E[d(P, P̃) | X,W ] =

∫ ∞
−∞

E[(FP(x)− FP̃(x))2 | X,W ] dx

=

∫ ∞
−∞

(E[FP̃(x)2 | X,W ]− FP(x)2) dx .

(2)

Note that

E[FP̃(x)2 | X,W ] =
1

m2
E[(#{i : X̃i ≤ x})2 | X,W ]

=
1

m2

m∑
i=1

k∑
j=1

pij +
1

m2

∑
i 6=l

 k∑
j=1

pij

 k∑
j=1

plj


=

1

m

k∑
j=1

Wj︸ ︷︷ ︸
constant

+
1

m2

∑
i 6=l

 k∑
j=1

pij

 k∑
j=1

plj

 , Xk ≤ x < Xk+1.

Minimizing equation (2) now becomes minimizing

n−1∑
k=1

(Xk+1 −Xk)

∑
i 6=l

 k∑
j=1

pij

 k∑
j=1

plj


=

n−1∑
k=1

(Xk+1 −Xk)


 m∑
i=1

 k∑
j=1

pij

2

−

 m∑
i=1

 k∑
j=1

pij

2
=

n−1∑
k=1

(Xk+1 −Xk)


m

 k∑
j=1

Wj

2

−

 m∑
i=1

 k∑
j=1

pij

2 ,
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which, after discarding constants, simplifies to maximizing

n−1∑
k=1

(Xk+1 −Xk)

 m∑
i=1

 k∑
j=1

pij

2 .

(iii) Earth mover’s distance.

Let t(P ) =
∑m

i=1

∑n
j=1 pij`(Yi −Xj). Let P be the matrix that minimizes t(P ). Consider a

quadruplet (i, j, k, l) such that i < k and j < l. If pil > 0 and pkj > 0, set α = min{pil, pkj} >
0, then update the entries of P as:

pij ← pij + α pil ← pil − α
pkj ← pkj − α pkl ← pkl + α

We name the updated weight matrix as P ′, then

t(P ′)− t(P ) = α(`(Yi −Xj) + `(Yk −Xl)− `(Yi −Xl)− `(Yk −Xj)).

Since ` is convex and

(Yi −Xj) + (Yk −Xl) = (Yi −Xl) + (Yk −Xj)

|(Yi −Xj)− (Yk −Xl)| < |(Yi −Xl)− (Yk −Xj)|

we have
`(Yi −Xj) + `(Yk −Xl) < `(Yi −Xl) + `(Yk −Xj)),

so t(P ′) < t(P ). This would contradict the fact that P is the minimizer, so such a quadruplet
does not exist. By Lemma 2, the solution P is a staircase matrix.

Proof of Theorem 2. Without loss of generality, suppose X1 < X2 < · · · < Xn and P is a staircase
weight matrix corresponding to stratified resampling. Each X̃i can only take values inXil, Xil+1, · · · , Xir,
with

Xil ≤ Xir and Xir ≤ Xi+1,l, for 1 ≤ i ≤ m− 1.

Hence,

Var

[
1

m

m∑
i=1

φ(X̃i) | X,W

]
=

1

m2

m∑
i=1

Var
[
φ(X̃i) | X,W

]
≤ 1

m2

m∑
i=1

1

4
max

x,y∈[Xir,Xil]
(φ(x)− φ(y))2

(Popoviciu’s inequality on variances, Lemma 4)

≤ 1

m2

m∑
i=1

1

4
max

x,y∈[Xir,Xil]
L2
φ(x− y)2 =

L2
φ

4m2

m∑
i=1

(Xir −Xil)
2

≤
L2
φ

4m2
(Xn −X1)

m∑
i=1

(Xir −Xil) =
L2
φ

4m2
(Xn −X1)2.
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Lemma 4 (Popoviciu’s inequaltity on variances, Popoviciu (1935)). Let M and m be the upper
bound and lower bound of a random variable X, respectively. Then, Var(X) ≤ (M −m)2/4.

Proof of Theorem 3. First note that H(x) is Hölder continuous with exponent 1/d,

‖H(x)−H(y)‖ ≤ 2
√
d+ 3|x− y|1/d.

With Hilbert curve stratified sampling, X̃i can only take values in Xil, Xil+1, · · · , Xir, with

h(X1) = h(X1l) ≤ · · · ≤ h(Xi−1,r) ≤ h(Xil) ≤ h(Xir) ≤ h(Xi+1,l) ≤ · · · ≤ h(Xnr) = h(Xn).

Note that

VarP

[
1

m

m∑
i=1

φ(X̃i) | X

]
=

1

m2

m∑
i=1

Var[φ(X̃i) | X] =
1

m2

m∑
i=1

Var[φ(H(h(X̃i))) | X]

≤ 1

4m2

m∑
i=1

(
max

x:h(x)∈[h(Xil),h(Xir)]
φ(x)− min

x:h(x)∈[h(Xil),h(Xir)]
φ(x)

)2

(Lemma 4)

=
1

4m2

m∑
i=1

(
max

y∈[h(Xil),h(Xir)]
φ(H(y))− min

y∈[h(Xil),h(Xir)]
φ(H(y))

)2

=
1

4m2

m∑
i=1

max
y1,y2∈[h(Xil),h(Xir)]

‖φ(H(y1))− φ(H(y2))‖2

≤ 1

4m2

m∑
i=1

max
y1,y2∈[h(Xil),h(Xir)]

L2
φ‖H(y1)−H(y2)‖2

≤
L2
φ

4m2

m∑
i=1

max
y1,y2∈[h(Xil),h(Xir)]

4(d+ 3)|y1 − y2|2/d

=
(d+ 3)L2

φ

m2

m∑
i=1

(h(Xir)− h(Xil))
2/d

≤
(d+ 3)L2

φ

m2

[
m∑
i=1

((h(Xir)− h(Xil))
2/d)d/2

]2/d

m1−2/d (Hölder inequality)

=
(d+ 3)L2

φm
1−2/d

m2
(h(Xm)− h(X1))2/d ≤

(d+ 3)L2
φ

m1+2/d
.

Proof of Proposition 2. We will prove that for all n = 2kd, where k is a positive integer and kd > 3,
there exists φ ∈ Φd, W and X such that

VarP (
1

n

n∑
i=1

φ(X̃i) | X,W ) ≥ 1

27d

1

n1+2/d
.

Let

Lk =

{
0,

1

2k
, · · · , 2k − 1

2k

}d
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be an equally spaced grid of [0, 1]d. Let X = (X1, X2, · · · , X2dk) be the sequence of points in Lk
ordered by o. Suppose

W = (W1, · · · ,W2dk) ∝ (1, · · · , 1︸ ︷︷ ︸
2kd−1

, 2, · · · , 2︸ ︷︷ ︸
2kd−1

).

The stratified resampling matrix is

P = diag{P1, · · · , P1︸ ︷︷ ︸
(2dk−1−2)/3

, P2, P3, · · · , P3︸ ︷︷ ︸
(2dk−1−2)/3

},

where

P1 =

(
2/3 1/3

1/3 2/3

)
, P2 =


2/3 1/3

1/3 2/3
2/3 1/3

1

 , P3 =


1

1/3 2/3
2/3 1/3

1

 .

Let φk(X = (x1, · · · , xd)) = xk be the function that returns the kth coordinate, k = 1, 2, · · · , d.
It is easy to see that φk is 1-Lipschitz. We prove a simple lemma below.

Lemma 5. If Z is a random variable defined by

Z =

{
x, with probability 1/3,

y with probability 2/3,

where x and y are distinct points in Lk, then Var(φk(Z)) ≥ 2−2k+1

9
for at least one k ∈ {1, 2, . . . , d}.

Proof of Lemma 5. By direct calculation, Var(φk(Z)) =
2

9
(xk − yk)2. Since x 6= y, at least one k

satisfies |xk − yk| ≥ 2−k.

Now the resampling variance is

d∑
k=1

1

m2
VarP

[
m∑
i=1

φk(X̃i) | X,W

]
=

1

m2

m∑
i=1

d∑
k=1

VarP

[
φk(X̃i) | X,W

]

≥ 1

m2

(2dk−4)/3∑
i=1

d∑
k=1

VarP

[
φk(X̃i) | X,W

]

≥ 1

m2

(2dk−4)/3∑
i=1

2−2k+1

9
=

1

22dk

2dk − 4

3

2−2k+1

9

≥ 1

22dk

2dk−1

3

2−2k+1

9
=

1

27
m−1−2/d (when dk ≥ 3).

Hence, there exists at least one k ∈ {1, 2, · · · , d}, such that

1

m2
VarP

[
m∑
i=1

φk(X̃i) | X,W

]
≥ 1

27d

1

m1+2/d
.
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Proof of Theorem 4. We define a coupling between Y ∼ P =
∑n

j=1WjδXj and Ỹ ∼ P̃ =
∑m

i=1
1
mδX̃i

by letting (Y, Ỹ ) = (XJ , X̃I), where P (I = i, J = j) = pij/m and pij is the (i, j)-entry of the
Hilbert curve resampling matrix P . Recall that with Hilbert curve stratified sampling, X̃i can only
take values in Xil, Xil+1, · · · , Xir, with

h(Xil) ≤ h(Xir) and h(Xir) ≤ h(Xi+1,l),

for 1 ≤ i ≤ n.

E[‖Y − Ỹ ‖p] =

m∑
i=1

n∑
j=1

1

m
pij‖X̃i −Xj‖p

≤ 1

m

m∑
i=1

max
z,z′∈[h(Xil),h(Xir)]

‖H(z)−H(z′)‖p

≤ 1

m

m∑
i=1

(2
√
d+ 3(h(Xir)− h(Xil))

1/d)p

≤


2p(d+ 3)p/2m−p/d, if p ≤ d,
2p(d+ 3)p/2

m
, if p > d.

Thus,

Wp(P∗,P) ≤ 2
√
d+ 3

m1/max(p,d)
, a.s.

Proof of Theorem 5. We introduce some notations for presentational convenience to reflect the
multiple-descendant nature. Let X̃(t−1)

k = X
(t−1)

σ(Uk,W
(t−1)
1:n )

corresponds to the resampled particle

(recall the definition of Uk for U (t)
SMG) for t ≥ 2, and let

X
(t)
k` = X

(t)
k(s−1)+` =

{
Γ1(vk(s−1)+`), t = 1,

Γt(X̃
(t−1)
k , vk(s−1)+`), 2 ≤ t ≤ T,

be the `th descendant of X̃(t−1)
k . Similarly, W (t)

k` = W
(t)
k(s−1)+`. See Figure 8 for an illustration.

We then introduce two lemmas.

Lemma 6. Under the assumptions of Theorem 5,

Var

[
1

n

s∑
k=1

r∑
`=1

W
(t)
k` φ(X

(t)
k` ) | X(1:t−1),W (t−1)

]
= O(n

−1− 4
d(d+4) ).

Lemma 7. Under the assumptions of Theorem 5,

Var

 1

n

∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

1

n

∑s
k=1

∑r
`=1W

(t)
k`

| X(1:t−1),W (t−1)

 = O(n
−1− 4

d(d+4) ).
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X̃(1:t−1)
1

X(1:t)
1,1

X(1:t)
1,2

X(1:t)
1,3

X̃(1:t−1)
n

X(1:t)
n,1

X(1:t)
n,2

X(1:t)
n,3

…

X̃(1:t)
1

X(1:t+1)
1,1

X(1:t+1)
1,2

X(1:t+1)
1,3

X̃(1:t)
n

X(1:t+1)
n,1

X(1:t+1)
n,2

X(1:t+1)
n,3

…Resampling Resampling… …

Figure 8: Illustration of multiple-descendant growth.

We prove by induction. For t = 1,(
E

[∑s
k=1

∑r
`=1W

(1)
ik φ(X

(1)
ik )∑s

k=1

∑r
`=1W

(1)
ik

−
∫
X
π1(x(1))φ(x(1))dx(1)

])2

=

(
E

[∑s
k=1

∑r
`=1W

(1)
ik φ(X

(1)
ik )∑s

k=1

∑r
`=1W

(1)
ik

−
∑s

k=1

∑r
`=1W

(1)
ik φ(X

(1)
ik )

sr

])2

=

(
E

[∑s
k=1

∑r
`=1W

(1)
ik φ(X

(1)
ik )∑s

k=1

∑r
`=1W

(1)
ik

(
1−

∑s
k=1

∑r
`=1W

(1)
ik

sr

)])2

≤ E

[∑s
k=1

∑r
`=1W

(1)
ik φ(X

(1)
ik )∑s

k=1

∑r
`=1W

(1)
ik

(
1−

∑s
k=1

∑r
`=1W

(1)
ik

sr

)]2

≤M2E

(1−
∑s

k=1

∑r
`=1W

(1)
ik

sr

)2
 = M2 Var

(∑s
k=1

∑r
`=1W

(1)
ik

sr

)
,

(3)

since n−1E
(∑s

k=1

∑r
`=1W

(1)
k`

)
= 1. The variance is O(n−1−4/[d(d+4)]) by the same analysis as part

A in the proof of Lemma 6.
Now suppose we have proved the cases from 1 to t − 1. Note that in state-space models,
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ht(X
(t−1)
k` , x) = πt

((
X̃

(1:t−1)
k` , x

))
/πt−1

(
X

(1:t−1)
k`

)
is only a function of x and X(t−1)

k` .

(
E

[∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

sr
−
∫
πt(x

(1:t))φ(x(t))dx(1:t)

])2

=

(
1

s
E

s∑
k=1

E

∫
X

πt

((
X̃

(1:t−1)
k , x

))
πt−1

(
X̃

(1:t−1)
k

) φ(x) dx | X(1:t−1)
k` ,W

(t−1)
k`


−
∫

πt(x
(1:t))

πt−1(x(1:t−1))
πt−1(x(1:t−1))φ(x(t))dx(1:t)

)2

=

(
E

s∑
k=1

r∑
`=1

W
(t−1)
k`∑s

k=1

∑r
`=1W

(t−1)
k`

∫
X
ht(X

(t−1)
k` , x)φ(x) dx−

∫
πt−1(x(1:t−1))ht(x

(t−1), x(t))φ(x(t))dx(1:t)

)2

=

(
E

[∑s
k=1

∑r
`=1W

(t−1)
k` φ̃t(X

(t−1)
k` )∑s

k=1

∑r
`=1W

(t−1)
k`

]
−
∫
πt−1(x(1:t−1))φ̃t(x

(t−1))dx(1:t−1)

)2

= O(n
−1− 4

d(d+4) ),

(4)
by induction hypothesis, where

φ̃t(x) =

∫
X
ht(x, u)φ(u) du

is bounded and Lipschitz since φ is bounded and ht(·, u) is bounded and uniformly Lipschitz by
assumption.

Now we analyze the difference bewteen normalized estimate and unnormalized estimate.(
E

[∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )∑s

k=1

∑r
`=1W

(t)
k`

−
∑s

k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

sr

])2

=

(
E

[∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )∑s

k=1

∑r
`=1W

(t)
k`

(
1−

∑s
k=1

∑r
`=1W

(t)
k`

sr

)])2

≤ E

[∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )∑s

k=1

∑r
`=1W

(t)
k`

(
1−

∑s
k=1

∑r
`=1W

(t)
k`

sr

)]2

≤M2E

(1−
∑s

k=1

∑r
`=1W

(t)
k`

sr

)2


= M2

(
E

[
1−

∑s
k=1

∑r
`=1W

(t)
k`

sr

])2

+M2 Var

(∑s
k=1

∑r
`=1W

(t)
k`

sr

)
.

(5)
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The first term is O(n−1−4/[d(d+4)]) by the same deduction as (4). For the second term,

Var

(∑s
k=1

∑r
`=1W

(t)
k`

sr

)
= E

[
Var

(∑s
k=1

∑r
`=1W

(t)
k`

sr
| X(1:t−1),W (1:t−1)

)]

+ Var

(
E

[∑s
k=1

∑r
`=1W

(t)
k`

sr
| X(1:t−1),W (1:t−1)

])
= O(n

−1− 4
d(d+4) ) (Lemma 6)

+ Var

(∑n
i=1

∑r
k=1W

(t−1)
ik 1̃t(X

(t−1)
ik )∑n

i=1

∑r
k=1W

(t−1)
ik

)
,

where
1̃t(x) =

∫
X
ht(x, u) du .

Since ht(·, u) is bounded and uniformly Lipschitz, 1̃t is bounded and Lipschitz. By induction
hypothesis, the variance term is O(n−1−4/[d(d+4)]). Now we have(

E

[∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )∑s

k=1

∑r
`=1W

(t)
k`

−
∫
πt(x

(1:t))φ(x(t))dx(1:t)

])2

=

(
E

[∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )∑s

k=1

∑r
`=1W

(t)
k`

−
∑s

k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

sr

]

+

[∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

sr
−
∫
πt(x

(1:t))φ(x(t))dx(1:t)

])2

≤ 2

(
E

[∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )∑s

k=1

∑r
`=1W

(t)
k`

−
∑s

k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

sr

])2

+ 2

(
E

[∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

sr
−
∫
πt(x

(1:t))φ(x(t))dx(1:t)

])2

= O(n
−1− 4

d(d+4) ),

by (4) and (5). This completes the induction hypothesis for the bias at step t,
For the variance at step t,

Var

(∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )∑s

k=1

∑r
`=1W

(t)
k`

)
= E

[
Var

(∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )∑s

k=1

∑r
`=1W

(t)
k`

| X(1:t−1),W (1:t−1)

)]

+ Var

(
E

(∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )∑s

k=1

∑r
`=1W

(t)
k`

| X(1:t−1),W (1:t−1)

])
.
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The first term is O(n
−1− 4

d(d+4) ) by Lemma 7. For the second term,

Var

(
E

(∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )∑s

k=1

∑r
`=1W

(t)
k`

| X(1:t−1),W (1:t−1)

])

≤ 2 Var

(
E

(∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )∑s

k=1

∑r
`=1W

(t)
k`

−
∑s

k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

sr
| X(1:t−1),W (1:t−1)

])

+ 2 Var

(
E

(∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

sr
| X(1:t−1),W (1:t−1)

])

≤ 2E

(∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )∑s

k=1

∑r
`=1W

(t)
k`

−
∑s

k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

sr

)2


+ 2 Var

(∑n
i=1

∑r
k=1W

(t−1)
ik φ̃t(X

(t−1)
ik )∑n

i=1

∑r
k=1W

(t−1)
ik

)
= O(n

−1− 4
d(d+4) ) (derivation in (5))

+O(n
−1− 4

d(d+4) ) (induction hypothesis).

This proves the induction hypothesis for the variance at step t.

Proof of Lemma 6. We omit the superscript (t−1) and (1 : t−1). We can decompose the conditional
variance into two parts:

Var

[
1

n

s∑
k=1

r∑
`=1

W
(t)
k` φ(X

(t)
k` ) | X,W

]
= E

[
Var

(
1

n

s∑
k=1

r∑
`=1

W
(t)
k` φ(X

(t)
k` ) | X̃i, W̃i

)
| X,W

]
︸ ︷︷ ︸

A

+ Var

[
E

(
1

n

s∑
k=1

r∑
`=1

W
(t)
k` φ(X

(t)
k` ) | X̃i, W̃i

)
| X,W

]
︸ ︷︷ ︸

B

.

To make the computation easy to read, we first analyze A and B separately.

Let lk(x) =
πt

(
(X̃k, x)

)
φ(x)

πt−1

(
X̃k

)
g
(
x | X̃k

) , which is Lipschitz by assumption. Suppose the Lipschitz

constant is Lk, which, for example, can be 2ML.
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A = E

[
Var

(
1

n

s∑
k=1

r∑
`=1

W
(t)
k` φ(X

(t)
k` ) | X̃i, W̃i

)
| X,W

]

=
1

n2

s∑
k=1

r∑
`=1

E
[
Var

(
W

(t)
k` φ(X

(t)
k` ) | X̃i, W̃i

)
| X,W

]
≤ 1

4n2

s∑
k=1

r∑
`=1

E

[
max

x,y∈Γt(X̃k,H([(`−1)/r,`/r]))
(lk(x)− lk(y))2 | X,W

]
(Popoviciu’s inequality on variance)

≤ 1

4n2

s∑
k=1

r∑
`=1

E

[
max

x,y∈Γt(X̃k,H([(`−1)/r,`/r]))
L2
k||x− y||2 | X,W

]

≤ 1

4n2

s∑
k=1

r∑
`=1

E

[
max

x,y∈H([(`−1)/r,`/r])
L2L2

k||x− y||2 | X,W
]

≤ 1

4n2

s∑
k=1

r∑
`=1

E
[
4(d+ 3)L2L2

k(1/r)
2/d | X,W

]
(Hölder continuity)

=
d+ 3

n2

s∑
k=1

L2L2
kr

1−2/d =
(d+ 3)L2L2

kr
−2/d

n
= O(n

−1− 4
d(d+4) ).

For part B, we have

B = Var

[
E

(
1

n

s∑
k=1

r∑
`=1

W
(t)
k` φ(X

(t)
k` ) | X̃k, W̃k

)
| X,W

]

= Var

 r
n

s∑
k=1

∫
X

πt

((
X̃

(1:t−1)
k , x

))
πt−1

(
X̃

(1:t−1)
k

) φ(x)dx | X,W


Let

fk(x) =

∫
X

πt

((
X̃

(1:t−2)
k , x, u

))
πt−1

(
X̃

(1:t−2)
k , x

) φ(u)du,

which is Lipschitz by assumption. Suppose the Lipschitz constant is LB for all k, which, for example,
can be 2ML. Then by Theorem 3 (Theorem 3 requires the functions to be the same, but actually it
can be seen that the proof still applies as long as all the functions have the same Lipschitz constant),

B ≤
(d+ 3)L2

B

(n/r)1+2/d
=

(d+ 3)L2
Br

1+2/d

n1+2/d
= O(n

−1− 4
d(d+4) ).

Combining A and B proves the claim.
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Proof of Lemma 7. Let e(X,W ) = E[
1

n

∑s
k=1

∑r
`=1W

(t)
k` | X,W ].

Var

 1

n

∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

1

n

∑s
k=1

∑r
`=1W

(t)
k`

| X,W

 ≤ 2 Var

 1

n

∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

e(X,W )
| X,W


+ 2 Var

 1

n

∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

1

n

∑s
k=1

∑r
`=1W

(t)
k`

1−

1

n

∑s
k=1

∑r
`=1W

(t)
k`

e(X,W )

 | X,W
 .

On the right hand side, the first term is O(n−1−4/[d(d+4)]) by Lemma 6; for the second term,

Var

 1

n

∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

1

n

∑s
k=1

∑r
`=1W

(t)
k`

1−

1

n

∑s
k=1

∑r
`=1W

(t)
k`

e(X,W )

 | X,W


≤ E


 1

n

∑s
k=1

∑r
`=1W

(t)
k` φ(X

(t)
k` )

1

n

∑s
k=1

∑r
`=1W

(t)
k`


21−

1

n

∑s
k=1

∑r
`=1W

(t)
k`

e(X,W )


2

| X,W



≤M2E


1−

1

n

∑s
k=1

∑r
`=1W

(t)
k`

e(X,W )


2

| X,W


=

C2
φ

e(X,W )2
Var

[
1

n

s∑
k=1

r∑
`=1

W
(t)
k` | X,W

]

≤
C2
φ

e2
Var

[
1

n

s∑
k=1

r∑
`=1

W
(t)
k` | X,W

]
= O(n

−1− 4
d(d+4) )

by taking φ to be the constant function 1 in Lemma 6.

B Details of the Stochastic Volatility Model

The multidimensional stochastic volatility model is

X(t) | X(1:t−1) ∼ N
(
αX(t−1),Σ

)
,

Y (t) | X(1:t), Y (1:t−1) ∼ N
(

0, β2 diag(exp(X(t)))
)
,

for t = 1, 2, · · · , T .
Here we set the dimension of this model as 2, with α = 0.7, β = 1, T = 10, and X(0) ∼ N (0,Σ),

where Σ =

(
1 0.8

0.8 1

)
.

We first generate (X(t), Y (t))Tt=1 from the above model, and then run the sequential quasi-Monte
Carlo with U (t)

SMG at each time t for 100 times. Within each run, the number of multiple descendants
ranges from 2 to 10, with the total number of the particles n = r3.
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