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Overview

The knockoff filter [1] is a flexible framework which enables variable selection with rig-
orous finite-sample statistical guarantees. A remaining challenge is the construction of
knockoff distributions and sampling mechanisms across a wide range of covariate models.

1. We provide a sequential characterization of every valid knockoff distribution.

2. We introduce a class of algorithms which use conditional independence information
to efficiently generate knockoffs.

3. We develop a concrete and easy-to-use knockoff sampler for a large number of
distributions with a family of MCMC tools.
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Figure 1: Illustration of the model-X knockoff filter [1].

•Non-asymptotic guarantees, valid in high dimensions

•No assumption on L(Y |X)

•Any black-box feature importance measure

•Knockoff sampling: generate knockoffs, random variables X̃ ∈ Rp for X ∈ Rp

such that for each j = 1, . . . , p,

(X, X̃)swap(j)
d
= (X, X̃); (1)

swap(j) means permuting Xj and X̃j. For example, (X1, X2, X3, X̃1, X̃2, X̃3)swap(2) is

the vector (X1, X̃2, X3, X̃1, X2, X̃3).

SCIP, the only generic knockoff sampler prior to this work [1], has two substantial
limitations.

– Only known for very special models (e.g., discrete Markov chains [3] and Gaussian
distributions [1])

– Not able to cover all valid knockoff distributions

Procedure 1: Sequential Conditional Independent Pairs (SCIP)

for j = 1 to p do

Sample X̃j from L(Xj | X-j, X̃1:(j−1)), conditionally independently from Xj

end

Sequential Formulation

Theorem 1: Sequential characterization of knockoff distributions

Pairwise exchangeability (1) holds if and only if both of the following conditions hold:

Conditional exchangeability For each j ∈ {1, . . . , p},

(Xj, X̃j) | X-j, X̃1:(j−1)
d
= (X̃j, Xj) | X-j, X̃1:(j−1). (2)

Knockoff symmetry For each j ∈ {1, . . . , p} and any Borel set A,

P((Xj, X̃j) ∈ A | X-j, X̃1:(j−1)) (3)

does not change if we swap previously sampled knockoffs with the original features.

•Equation (2) resembles a time-reversible Markov chain (MC).

The Metropolized Knockoff Sampler

• SCEP: a completely general strategy for generating knockoffs

Procedure 2: Sequential Conditional Exchangeable Pairs (SCEP)

for j = 1 to p do

Sample X̃j by taking one step of a time-reversible MC starting from Xj.
The transition kernel must be faithful, i.e., it depends on the previous pairs
symmetrically so knockoff symmetry (3) holds and must admit
L(Xj | X-j, X̃1:(j−1)) as a stationary distribution.

end

•Time-reversible MC. With stationary distribution π, Metropolis–Hastings (MH)
operates as follows: generate proposal x∗ from some distribution q(· | x) and set

y =

{
x∗ with prob. α,

x with prob. 1− α,
α = min

(
1,
π(x∗)q(x | x∗)
π(x)q(x∗ | x)

)
.

•Challenge: π(x), π(x∗) hard to compute; e.g., the target L(X2 | X-2, X̃1) has
density proportional to P(X = x)P(X̃1 = x̃1 | X = x):

P(X = x)

[
q(x̃1 | x1) min

(
1,
q(x1 | x̃1)P(X1 = x̃1, X-1 = x-1)

q(x̃1 | x1)P(X1 = x1, X-1 = x-1)

)
+ δ(x̃1 − x1)

∫
q(x∗ | x1)

(
1−min

(
1,
q(x1 | x∗)P(X1 = x∗, X-1 = x-1)

q(x∗ | x1)P(X1 = x1, X-1 = x-1)

))
dx∗︸ ︷︷ ︸

intractable integral

]
.

•Solution: condition on the proposals. Let the target be L(Xj | X-j, X̃1:j−1, X
∗
1:j−1)

rather than L(Xj | X-j, X̃1:j−1); returning to the previous example, L(X2 |
X-2, X̃1, X

∗
1 ) has density now proportional to

P(X = x)q(x∗1 | x1)

[
δ(x̃1 − x∗1) min

(
1,
q(x1 | x̃1)P(X1 = x̃1, X-1 = x-1)

q(x̃1 | x1)P(X1 = x1, X-1 = x-1)

)
+ δ(x̃1 − x1)

(
1−min

(
1,
q(x1 | x∗1)P(X1 = x∗1, X-1 = x-1)

q(x∗1 | x1)P(X1 = x1, X-1 = x-1)

))]
.

The intractable integral goes away! Now we introduce the main algorithm.

Algorithm 1: Metropolized knockoff sampling (Metro).

for j = 1 to p do
Sample X∗j = x∗j from a faithful proposal distribution qj.

Accept the proposal with probability

min

(
1,

qj(xj|x∗j)P(X-j=x-j,Xj=x
∗
j ,X̃1:(j−1)=x̃1:(j−1),X

∗
1:(j−1)=x

∗
1:(j−1))

qj(x∗j |xj)P(X-j=x-j,Xj=xj,X̃1:(j−1)=x̃1:(j−1),X
∗
1:(j−1)=x

∗
1:(j−1))

)
.

Upon acceptance, set x̃j = x∗j ; otherwise, set x̃j = xj.

end

Return X̃ = (x̃1, x̃2, . . . , x̃p)

•Two general and concrete methods for choosing proposal distributions.

– Covariance-guided proposals. Choose proposals pretending X is Gaussian
(known, [1]) and let MH do the correction.

– Multiple-try Metropolis. A clever way to include multiple proposals in one
step for higher probability to accept [2].

Graphical Structure and Time Complexity

Theorem 2: Complexity lower bound for knockoff sampling

If a knockoff sampling procedure is given the support of X and is only allowed to
make queries of the unnormalized density of X , then the total number N of queries
of the unnormalized density must obey N ≥ 2#{j:Xj 6=X̃j} − 1 a.s.

•Graphical model. Let X ∈ Rp be a random vector whose density factors over a
graph G:

P(x) ∝ Φ(x) =
∏
c∈C

φc(xc); (4)

here, C is the set of maximal cliques of graph G and Φ is unnormalized version of P.

•Junction tree. A junction tree of a graph provides a way of ordering the variables
so they behave like high-order Markov chains. See our paper for the algorithm!
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Figure 2: A junction tree of treewidth 2 for the 2× 3 grid, which happens to be a chain.

Theorem 3: Computational efficiency of Metro

Let X be a random vector with a density which factors over a graph G as in (4). Let
T be a junction tree of width w (the size of the largest vertex of T minus one) for
the graph G. Under the conditions above, Metro uses O(p2w) queries of Φ.

Numerical Experiments
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Figure 3: Simulation results for the t-distributed Markov chains. The unit of step sizes is
√

1/(Σ−1)jj.

All standard errors are below 0.001. The mean absolute correlation (MAC) is defined as the average of
|corr(Xj, X̃j)| from j = 1 to p. Many more simulations in the paper!
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