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Abstract

Inferring variable importance is the key problem of many scientific studies, where researchers
seek to learn the effect of a feature X on the outcome Y in the presence of confounding variables
Z. Focusing on classification problems, we define the expected total variation (ETV), which
is an intuitive and deterministic measure of variable importance that does not rely on any
model context. We then introduce algorithms for statistical inference on the ETV under design-
based/model-X assumptions. These algorithms build on the floodgate notion for regression
problems (Zhang and Janson 2020). The algorithms we introduce can leverage any user-specified
regression function and produce asymptotic lower confidence bounds for the ETV. We show the
effectiveness of our algorithms with simulations and a case study in conjoint analysis on the US
general election.

Keywords. Conjoint analysis, effect size, randomized experiments, sensitivity analysis, total variation,
variable importance measure.

1 Introduction

1.1 Motivation

In many scientific studies, researchers would like to understand the effect of a feature X on a
response variable Y , while controlling for potential confounding features Z. While this question
is sometimes simplified to a hypothesis testing problem of “does X affect Y at all in the presence
of Z”, it is more desirable to follow up with “if so, by how much”; that is, we wish to provide
a quantitative variable importance measure (VIM). In traditional statistical frameworks, such a
follow-up question is addressed by postulating a parametric model of L(Y | X,Z) and looking at
the inferred parameters. However, such parametric models are often limited in their capacity to
capture complex relationships. This paper aims at defining a VIM for classification problems and
conducting inference on it. As a design objective, this (population-level) VIM must be model-free,
in that it does not rely on an underlying model assumptions. We would also like the VIM to be
intuitive and easy to interpret.
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1.2 Our contribution

The main contributions of this work are listed below.

1. We propose the expected total variation (ETV) as a VIM that is well-defined for any type
of variables (X,Y, Z). In this paper, we focus on categorical response variables Y , for which
VIMs with rigorous statistical guarantees were rarely discussed in the literature and ETV has
both an intuitive model-free interpretation and sound statistical properties.

2. We introduce algorithms that make statistical inference on the ETV. These algorithms work
without imposing any assumptions on the distribution L(Y | X,Z). Instead, we make the
design-based/model-X assumption that we can sample from L(X | Z), which we discuss in
Secion 2.2. We accompany our algorithms with practical parameter choice recommendations
and show that they work well in our extensive simulation results.

3. We demonstrate the effectiveness of our algorithms in a real conjoint data analysis study.

In the remainder of this section, we will discuss related work and introduce notation. The
mathematical definition of ETV will be given in Section 2. We will discuss the properties of ETV
in Section 2.1. Section 2.2 is devoted to our main floodgate algorithm to conduction inference on
ETV. We then study the algorithm parameters in Section 2.3 to facilitate practical applications and
discuss a generalization of ETV in Section 2.4. Section 3 includes simulations on synthetic data to
support the effectiveness of our proposed method. We then apply our method to a conjoint analysis
example on political candidate preferences in Secton 4.

1.3 Related work

The canonical VIM is defined through parametric models. When Y is categorical, the textbook
approach is to parameterize L(Y | X,Z) with a generalized linear model (Agresti 2015), and there
has been work on parameter inference in high-dimensional sparse models (Van de Geer et al. 2014;
Belloni et al. 2016). Generalized linear models have limited capacity in capturing non-linear effects,
and such parameter-based VIMs crucially rely on the model specification and become ill-defined
when the model is misspecified.

A more contemporary line of work utilizes machine learning methods to capture variable im-
portance (Fisher et al. 2019; Watson and Wright 2021; Molnar et al. 2023) in a model-free manner.
While these VIMs are well-defined without parametric assumptions, they are associated with a
trained machine learning model, which depends on the model choice and the data itself.

Another existing approach (Castro et al. 2009; Williamson and Feng 2020; Ning et al. 2022)
borrows ideas from the game theory literature and considers VIMs based on the Shapley value
(Shapley 1953). Shapley-value based VIMs capture the variable’s predictive power, and are generally
positive even for statistically null variables (that is, X where X ⊥⊥ Y | Z). Thus, while these VIMs
have attractive predictive interpretations, they lack a causal interpretation.

Azadkia and Chatterjee (2021) introduced a model-free VIM based on cumulative distributions
functions for non-categorical Y ; Huang et al. (2020) generalized it to categorical Y , but it relies on
a user-specified kernel function. These VIMs have the appealing property that they are 0 if and
only if Y ⊥⊥ X | Z and 1 if and only if Y is a deterministic measurable function of (X,Z). Both
papers considered consistent estimators of the VIMs and not lower confidence bounds. Zhang and
Janson (2020) proposed a model-free VIM called the minimum mean squared error (mMSE) for
non-categorical Y and provided a lower confidence bound. Zhang and Janson (2020, Section 3.1)
extended their inference to a VIM called the mean absolute conditional mean (MACM), which
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is defined for binary Y . Similarly, Williamson et al. (2021) defined a class of VIMs based on
a variable’s additional predictiveness and constructed estimators and confidence intervals. These
VIMs hinge on a pre-determined family of predictors, and while the VIMs could work for any type
of responses, Williamson et al. (2021) also only considered inference in cases of non-categorical and
binary responses where the conditional mean is meaningful.

To the best of our knowledge, our work is the first to propose a model-free VIM for general
categorical responses that is model-free, natural and easy to interpret, and provide a lower confidence
bound for it.

Finally, there are two methods in the literature (Zhang and Janson 2020; Näf et al. 2022) that
have particularly strong connections with our proposed method. As it requires first introducing our
algorithm to properly discuss comparisons with these methods, we will review these works and their
relationship to ours in Section 2.5.

1.4 Notation

For random variables or vectors W1 and W2, L(W1) means the distribution of W1 and L(W1 |W2)
means the conditional distribution of W1 given W2. TV(L1,L2) means the total variation distance
between distributions L1 and L2. Unless otherwise specified, vectors are column vectors. Φ denotes
the cumulative distribution function of the standard Gaussian distribution N (0, 1).

2 Floodgate for categorical response

2.1 The expected total variation distance

Let (X,Y, Z) be a random vector with three components. We would like to quantify the effect size
of X; that is, the strength of the conditional dependence between X and Y given Z. We propose
to use the expected total variation distance (ETV) between L(Y | X,Z) and L(Y | Z), defined as

ETV(X,Y, Z) =
1

1− 1/|Y|
E[TV(L(Y | X,Z),L(Y | Z))], (1)

as the VIM, where |Y| is the support size of Y (if |Y| = ∞, we simply normalize by 1). The
normalizing factor is to ensure the value of ETV to be in [0, 1], as stated in Lemma 1.

Lemma 1 (Range of ETV). If P(Y ∈ Y) = 1, then 0 ≤ ETV(X,Y, Z) ≤ 1, where the equality is
achieved when X, conditional on Z, deterministically determines Y and P(Y = y | Z) = 1/|Y| for
all y ∈ Y.

Note that if X is continuous and P(Y = y | Z) = 1/|Y| for all y ∈ Y, then there always exists
L(X | Z) such that Y is a deterministic function of (X,Z). This means that for any support Y,
there exists (X,Y, Z) such that ETV(X,Y, Z) is equal to 1 for finite |Y|, or gets arbitrarily close to
1 for |Y| =∞.

The ETV has several desirable properties that distinguish it from other VIMs in the literature:

1. ETV captures all possible effects of X on Y conditional on Z, including both linear and
non-linear effects.

2. ETV has a very simple and intuitive form and does not depend on any pre-specified model or
kernel function (that is, it is model-free).

3. ETV attains its minimum value zero if and only if X ⊥⊥ Y | Z.
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4. Particularly ideal for categorical Y , the value of ETV does not change under one-to-one
transformation of Y .

ETV’s simple form should already make it very easy to interpret conceptually. The key component
is the total variation distance, which is also the Wasserstein distance with 0-1 loss and half the
the L1 distance between probability density or mass functions. To visually demonstrate the ETV,
we consider an example where Y could be one of 5 categories s1, . . . , s5. In Figure 1, the red
bars represent the probability of Y being from each category conditional on (X,Z) taking on some
particular value (x, z), the blue bars represent the probability of Y taking each value conditional
on Z = z, and the yellow bars represent the difference. The expected sum of the yellow bars, when
averaged over (X,Z), is equal to 2(1− 1/|Y|) ETV.

s1 s2 s3 s4 s5

P(Y=si | Z)

P(Y=si | X, Z)

TV

Figure 1: ETV illustration. The expected sum of the yellow bars, when averaged over (X,Z), is
equal to 2(1− 1/|Y|) ETV.

Finally, we briefly discuss the interpretation of ETV in the context of sensitivity analysis. When
Y ⊥⊥ X | Z does not hold, we can hypothesize the existence of a confounding variable U , such that
Y ⊥⊥ X | Z,U . We can define B(X,Z,U) ≥ 1 as the (almost sure) supremum of{

p(X | U,Z)

p(X | Z)
,

p(X | Z)

p(X | U,Z)

}
.

Therefore, B measures the minimal confounding effect that can explain away the conditional non-
independence. We can show that B(X,Z,U) ≥ 1 + 2(1 − 1/|Y|) ETV(X,Y, Z) (see Appendix B).
This interpretation is very relevant for low-signal problems such as the genome-wide association
studies (GWAS), where most signals are weak and one would want to know the sensitivity of the
conditional non-independence.

2.2 The floodgate algorithm

Having introduced ETV as a VIM, we now focus on designing algorithms to do inference on it.
Astute readers might already recognize that (1) has a close relationship with the ability to distinguish
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the distributions
L(X,Y, Z) and L(Y | Z)× L(X | Z)× L(Z). (2)

In fact, the ETV measure (1) exactly corresponds to the optimal error rate when classifying samples
into the two populations. We state a general result in Theorem 1 below.

Theorem 1. Let π0 and π1 be two distributions supported on the same continuous or discrete
space Ω. Let π be the distribution of (ω,E), where E ∼ Bern(a) and ω | E ∼ πE. Then for any
f : Ω→ [0, 1],

2

(
1− Eπ

[
1

a
I(E = 1)(1− f(ω)) +

1

1− a
I(E = 0)f(ω)

])
≤ TV(π1, π0),

where the equality could be achieved by an optimal f .

Armed with this observation, we can convert the task of inferring ETV into inferring the clas-
sification error rate of samples from the two distributions in (2). We could collect samples from
L(X,Y, Z), and the design-based/model-X approach (Rubin 1974; Holland 1986; Janson 2017; Can-
dès et al. 2018) allows us to obtain samples from L(Y | Z)×L(X | Z)×L(Z) by utilizing our ability
to sample from L(X | Z). In randomized experiments (Rubin 1974; Holland 1986), L(X | Z) is
known by design, such as the example of conjoint analysis we present in Section 4. Even for some
observational data sets, L(X | Z) can be estimated accurately from unlabeled samples of (X,Z)
without Y . This assumption can be further relaxed if one is willing to assume certain parametric
models for L(X | Z) (Zhang and Janson 2020, Section 3.2), and the floodgate approach for other
VIMs has been extended to work under doubly robust assumptions, but such an extension is beyond
the scope of this paper.

Assuming it is possible to sample from L(X | Z), it is then straightforward to apply Theorem 1
to this specific case.

Corollary 1. Let (X(0), Y, Z) ∼ p(z)p(x|z)p(y|x, z) and X(1), . . . , X(J) | X(0), Y, Z
i.i.d.∼ p(x|Z).

For any f : (X ,Y,Z)→ [0, 1],

2

1− E

1− f(X(0), Y, Z) +
1

J

J∑
j=1

f(X(j), Y, Z)


≤

∫ ∣∣∣p(y|x, z)− p(y|z)
∣∣∣p(x|z)p(z) dx dy dz .

Taking advantage of Corollary 1, we can design an algorithm that produces a lower confidence
bound of (1) using the central limit theorem. The algorithm works by first choosing a classification
function f as in Corollary 1, then using the sample mean and variance of classification error to
produce a lower confidence bound for the real classification accuracy rate, which is itself a lower
bound of the optimal classification accuracy rate and a re-scaled ETV. This idea of producing a lower
confidence bound of a lower bound of the quantity of interest is metaphorically termed “floodgate”
in Zhang and Janson (2020), hence the name of Algorithm 1. Note that there is an oracle f that
provides the best lower confidence bound, in the sense given in Theorem 2. Thus, the coverage of
Algorithm 1 can be tight.
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Algorithm 1: Floodgate for categorical responses.
Input: An i.i.d. data set (Xi, Yi, Zi)

n
i=1, conditional distribution L(X | Z) and a classifier

f : (X ,Y,Z)→ [0, 1], number of resamples J , Y ’s support size |Y|, confidence level
α ∈ (0, 1)

Output: a lower confidence bound for ETV(X,Y, Z)
for i = 1 to n do

Draw X
(1)
i , . . . , X

(J)
i

i.i.d.∼ L(X | Z = Zi).
Set (Y

(j)
i , Z

(j)
i ) = (Yi, Zi), Ei = 1 and E

(j)
i = 0, 1 ≤ j ≤ J .

Li ← (|f(Xi, Yi, Zi)− 1|+ (1/J)
∑J

j=1 |f(X
(j)
i , Y

(j)
i , Z

(j)
i )− 0|).

end
L̄←

∑n
i=1 Li/n

L̄2 ←
∑n

i=1 L
2
i /n

Return Lα
n(f) = max(0, (1− L̄− zα

√
L̄2 − L̄2/

√
n)/(1− 1/|Y|)), where zα satisfies

1− Φ(zα) = α.

Theorem 2 (Validity of Algorithm 1). For any given f and α ∈ (0, 1), limn→∞ P(ETV ≥ Lα
n(f)) ≥

1− α. Additionally, limn→∞ P(ETV ≥ Lα
n(foracle)) = 1− α, where

foracle(x, y, z) = I(p(y | x, z) > p(y | z)) = I
(

p(y | x, z)
p(y | x, z) + p(y | z)

> 0.5

)
. (3)

The proof of Theorem 2 follows directly from Corollary 1 and the central limit theorem once we
note that Li’s are bounded and independent and identically distributed. The foracle that achieves
exact coverage is constructed in the proof of Corollary 1.

A natural question that the reader may have is whether we could provide an upper confidence
bound for the ETV. We present Theorem 3, which states that in some sense the answer is no: a
generic confidence upper bound of the ETV must simply cover the theoretical upper bound even
under the most ideal scenario: no Z variable, X and Y independent, X’s distribution is known, and
Y ’s distribution is uniform.

Theorem 3. Let (Xi, Yi)
n
i=1 be i.i.d. samples from L, where the marginal distribution of Yi

is Unif({1, . . . ,K}). Let CLX
be an algorithm tailored for the marginal distribution of Xi that

takes (Xi, Yi)
n
i=1 as input and produces a confidence upper bound, such that PL(CLX

(X1:n, Y1:n) ≥
ETV(X,Y )) ≥ 1 − α, α ∈ (0, 1), for any L that respects the marginal distributions LX , where
ETV(X,Y ) is (1) with an empty Z. Then,

P(CLX
(X1:n, Y1:n) ≥ 1) ≥ 1− α (4)

when (Xi, Yi)
i.i.d.∼ LX × Unif({1, . . . ,K}), where LX is a continuous distribution and 1 is the

theoretical ETV upper bound given by Lemma 1.

To provide some intuition on Theorem 3, we can understand the hardness of producing an upper
bound by thinking about the general problem of upper bounding the total variance distance between
L1 and L2. By writing TV(L1,L2) = supA |L1(A)−L2(A)|, we can easily obtain a lower bound for
TV by fixing a non-trivial set A, and it is then straightforward to empirically estimate the lower
bound |L1(A) − L2(A)|. However, in order to upper bound or estimate the actual TV, one would
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need to be able to consistently estimate the set A = argmaxA |L1(A)− L2(A)|. For the ETV, this
translates to consistently estimating the optimal classifier f given by (3), which requires to impose
conditions on L(Y | X,Z). On the other hand, we do not need any such assumptions to produce a
lower confidence bound.

Moving back to Algorithm 1, the function f in practice would have to be trained on a separate
dataset to maintain validity, which is not fully utilizing the whole dataset. Next, we show how to
apply cross-validation in a way that every data point is used for inference.

Data splitting, cross validation and derandomization To avoid excluding any data in the
inference step, we use the idea of cross-validated floodgate from Zhang and Janson (2023). The
idea borrows results from central limit theorems for cross-validation (Austern and Zhou 2020; Bayle
et al. 2020) and ensures the validity of Algorithm 2, a cross-validated version of Algorithm 1.

Algorithm 2: Cross-validated floodgate for categorical responses.
Input: An i.i.d. data set (Xi, Yi, Zi)

n
i=1, conditional distribution L(X | Z) and a classifier

training rule f , number of resamples J , number of CV folds k, Y ’s support size |Y|,
confidence level α ∈ (0, 1)

Output: a lower confidence bound for ETV(X,Y, Z)
Randomly partition the data into k folds Bc

1, . . . , B
c
k with sizes differing by at most one.

for r = 1 to k do
Train a classifier fBr with data Br, plug in fBr and data (Xi, Yi, Zi)i∈Bc

r
to Algorithm 1,

and record the sample mean and sample variance of the L vector as µ̂r and σ̂2
r .

end
µ̂←

∑k
r=1 µ̂r/k

σ̂2 ←
∑k

r=1 σ̂
2
r/k

Return Lα
n(f) = max(0, (1− µ̂− zασ̂/

√
n)/(1− 1/|Y|)), where zα satisfies 1− Φ(zα) = α.

Theorem 4 (Validity of Algorithm 2). For any given f and α ∈ (0, 1), let

hn((x, x
(1:J), y, z);B1) = |fB1(x, y, z)− 1|+ 1

J

J∑
j=1

|fB1(x
(j), y, z)|,

h̄n((x, x
(1:J), y, z)) = EB1 [hn((x, x

(1:J), y, z);B1)],

σn =
√

Var(h̄n((X,X(1:J), Y, Z)))

where the subscript B1 means taking expectation over B1, which contains the n(1 − 1/k) training
samples for fB1. Assume

(a)
(
h̄n((X,X(1:J), Y, Z))− E[h̄n((X,X(1:J), Y, Z))]

)
/σ2

n is uniformly integrable;

(b) and the asymptotic linearity condition (2.2) in Bayle et al. (2020) holds in probability:

1

σn
√
n

k∑
r=1

∑
i∈Bc

r

(
(hn(Xi, X

1:J
i , Yi, Zi);Br)− E[hn(Xi, X

1:J
i , Yi, Zi);Br) | Br]

−
(
h̄n((X,X(1:J), Y, Z))− E[h̄n((X,X(1:J), Y, Z))]

))
p→ 0,
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then limn→∞ P(ETV ≥ Lα
n(f)) ≥ 1−α. Additionally, limn→∞ P(ETV ≥ Lα

n(foracle)) = 1−α, where
foracle is given by (3).

Assumption (a) holds if h̄n((X,X(1:J), Y, Z)) does not converge to a degenerate distribution.
Section 3 in Bayle et al. (2020) discussed some sufficient conditions of assumption (b). Notably,
when the number of cross-validation folds k = O(1), then a sufficient condition of (b) is

E[Var[hn((X,X(1:J), Y, Z);B1) | (X,X(1:J), Y, Z)]]

Var(h̄n((X,X(1:J), Y, Z)))
→ 0 in probability.

Assuming the denominator converges to a positive constant, this condition says that the out-of-
sample loss is asymptotically stable over randomness of the training sample. Because hn is bounded,
the conditions of Theorem 4 hold if there exists f∗ such that fB1(x, y, z)→ f∗(x, y, z) in probability,
uniformly for any (x, y, z).

2.3 Classification function

In this section, we discuss how to train the function f in Algorithms 1 and 2.
By looking at the ultimate goal of f , which is to predict whether X is a resample or the original

sample, a greedy approach is to train f by regressing E on (X,Y, Z) using samples

(E
(j)
i , (X

(j)
i , Yi, Zi)), i = 1, . . . , n, j = 0, . . . , J,

where X
(0)
i = Xi and E

(j)
i = I(j = 0). However, this approach is ignoring important structural

information. From the proof of Corollary 1, the oracle f that minimizes the expected error rate is
the one given in (3), which motivates the following choice of f in practice

f(x, y, z; pθ1 , pθ2 , c) =


1, p̂i > 0.5 + c,

0, p̂i < 0.5− c

0.5, |p̂i − 0.5| ≤ c,

(5)

where

p̂i =
pθ̂1(y | x, z)

pθ̂1(y | x, z) + pθ̂2(y | z)
,

θ̂1 and θ̂2 are parameter estimates of working models pθ1(y | x, z) and pθ2(y | z) and c acknowledges
the estimation error and gives an extra degree of freedom. The working models can be from any
model family, including simple generalized linear models and fancy machine learning models. The
logic behind such f is that we classify the sample to the population 0 or 1 that has the higher
estimated likelihood, but when the two likelihoods are close and we are not sure, we set it to 0.5
and essentially discard this one sample. The parameter c controls our comfort level of confidence.
We will show the empirical effect of c in Section 3.2.

2.4 Generalization to hierarchical responses

In some cases, the response Y may have several levels, arranged in a hierarchy. For example, a wolf
is also a type of dog, which is also an animal. We can choose to relabel wolf to dog or animal to
reflect the relevant level of granularity. It is then straightforward to apply Algorithms 1 and 2 to
the relabeled data. We wish to raise a subtle yet crucial point that one cannot simply drop certain
labels. For example, if one only cares about a feature X’s ability to distinguish Y = A from Y = B,
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one might be tempted to simply drop all samples where Y ̸∈ {A,B}. However, doing so would
require one to be able to sample from L(X | Z, Y ∈ {A,B}) to apply Algorithms 1 or 2, which is a
different assumption from being able to sample from L(X | Z).

If all values of Y have the same number of levels, then we can define an overall VIM by weighting
all levels. Let Y = (Y1, . . . , YK) have K hierarchy levels, where for any possible values Y and Ỹ ,
if Yk ̸= Ỹk, then Yk′ ̸= Ỹk′ for all k′ > k. For instance, we can let K = 3 and Y1, Y2, Y3 be the
taxonomic ranks of family, genus and species. Next, we define a VIM at each hierarchical level
k > 1 by

HETVk(X,Y, Z) = (1− 1/|Y1:k|) ETV(X,Y1:k, Z)− (1− 1/|Y1:k−1|) ETV(X,Y1:(k−1), Z),

where we add back the normalizing constant to ensure HETVk(X,Y, Z) ≥ 0. A sufficient condition
of HETVk(X,Y, Z) = 0 is

L(Yk | X,Y1:(k−1), Z) = L(Yk | Y1:(k−1), Z), equivalently L(X | Y1:k, Z) = L(X | Y1:(k−1), Z),

so we can interpret HETVk(X,Y, Z) as an ETV-based VIM of X at hierarchical level k. Finally,
we define an overall VIM of X by aggregating ETV(X,Y1, Z) and HETV at all others levels with
a user-specified weight vector w:

HETVw(X,Y, Z) = w1(1− 1/|Y1|) ETV(X,Y1, Z) +

K∑
k=2

wk HETVk(X,Y, Z).

We can then modify Algorithm 1 to support HETV, as below.

Algorithm 3: Floodgate for hierarchically weighted categorical responses.
Input: An i.i.d. data set (Xi, Yi, Zi)

n
i=1, conditional distribution L(X | Z) and classifiers

fk : (X ,Y1:k,Z)→ [0, 1], number of resamples J , confidence level α ∈ (0, 1)
Output: a lower confidence bound for ETVw(X,Y, Z)
for i = 1 to n do

Draw X
(1)
i , . . . , X

(J)
i

i.i.d.∼ L(X | Z = Zi).
Set (Y

(j)
i , Z

(j)
i ) = (Yi, Zi), Ei = 1 and E

(j)
i = 0, 1 ≤ j ≤ J .

for k = 1 to K do
Li,k ← (|fk(Xi, Y1:k,i, Zi)− 1|+ (1/J)

∑J
j=1 |fk(X

(j)
i , Y

(j)
1:k,i, Z

(j)
i )− 0|).

end
Li ← w1Li,1 +

∑K
k=2wk(Li,k − Li,k−1).

end
L̄←

∑n
i=1 Li/n

L̄2 ←
∑n

i=1 L
2
i /n

Return Lα
n(f) = max(0, 1− L̄− zα

√
L̄2 − L̄2/

√
n), where zα satisfies 1− Φ(zα) = α.

In the same way, we could also modify Algorithm 2 to work for HETV.

2.5 Relationship with literature

Having introduced the definition of ETV and algorithms to produce its lower confidence bounds,
we pause to discuss two recent works in the literature that have connections to our work.
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Connection to MACM in Zhang and Janson (2020) Zhang and Janson (2020) defined
MACM for the specific case where Y ∈ {1,−1}, which has exactly twice the value of ETV. Their
inference (Zhang and Janson 2020, Algorithm 3) is equivalent to our Algorithm 1 with

f(X,Y, Z) =

{
I(µ(X,Z) ≥ E[µ(X,Z) | Z]), if Y = 1,

I(µ(X,Z) ≤ E[µ(X,Z) | Z]), if Y = −1.
(6)

The details are deferred to Appendix C.

Connection to λ̂ρ
bayes in Näf et al. (2022) Näf et al. (2022) studied lower confidence bounds

for TV(P,Q) based on i.i.d. samples from P and Q. One of their proposed estimators, λ̂ρ
bayes in Näf

et al. (2022, Proposition 3), is based on the same classification idea as Algorithm 1. Specifically,
Näf et al. (2022) also utilized the relationship between the classification accuracy and the total
variation distance, and λ̂ρ

bayes is constructed based on this fact for a fixed classification function
ρt(x) = I(ρ(x) > t) with t = 0.5. Similar to our discussion around the parameter c in Section 2.3,
Näf et al. (2022) showed that there may exist better choices for t in ρt(x) than the natural t = 0.5,
depending on prior knowledge of P and Q. While we propose to use cross-validation to choose c,
Näf et al. (2022) went on to consider estimators very different from λ̂ρ

bayes. While our method shares
the same construction idea as λ̂ρ

bayes in Näf et al. (2022), the key difference between the two works is
the problem setting. Näf et al. (2022) studied two-sample testing, where the samples are naturally
labeled with auxiliary information; our work is centered around the ETV, which is a novel VIM
defined through a sample-labeling mechanism based on L(X | Z).

3 Simulations

3.1 Floodgate with different classification functions

In this section, we consider the model

Y | X ∼ Bern(Φ(X⊤β)),

X ∼ N (0,Σ),
(7)

where X is a p-dimensional column vector and we provide lower confidence bound for ETV(Xj , Y,X-j)
for each j. We choose Σij = ρ|i−j|. We set p = 4 or 10, β = (0, 1, 2, 3) for p = 4 and
β = (0, 0, 0, 0, 1, 2, 3, 4, 5, 6) for p = 10, n = 100p, and apply 10-fold cross validation in Algo-
rithm 2. We use three types of classification functions as in (5). For the oracle model, pθ1 and pθ2
are set to the true models. For the logistic or tree models, pθ1 and pθ2 are logistic or tree models, and
θ̂1 and θ̂2 are trained on cross-validated data. We find that the oracle gives the highest floodgate
bound (as expected), and the logistic model is a close second. Even the generic random forest model
performs reasonably well.
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Figure 2: Floodgate lower bound with different calssification functions, averaged over 1536 inde-
pendent experiments.

3.2 Effect of threshold c

In this section, we demonstrate the effect of c in (5). We consider a model of the form

Y | X ∼ Bern

Φ

βkXkZk +
∑
j ̸=k

βjXj

 ,

X ∼ N (0,Σ), Z ∼ Bern(0.5), X ⊥⊥ Z,

(8)

where X is a p-dimensional column vector and we provide lower confidence bound for ETV(Xk, Y, (X-k, Z)),
where we rotate the value of k. We choose Σij = ρ|i−j|. We set p = 10, β = (0, 0, 0, 1, 2, 3, 4, 5, 6, 7)
and n = 200. We focus on two classification functions as in (5) and the results are reported in
Figure 3. For the “logistic” model, we use logistic models for pθ1 and pθ2 , and θ̂1 and θ̂2 are trained
on cross-validated data; for the “logistic_int” model, we add interactions between Z and other Xj ’s
into the models. We explore the following methods to choose c.

1. “Naive” means setting c = 0.

2. “CV” means using 10-fold cross validation to choose c. Note that this cross validation is
different from one we use to train f in Algorithm 2.

We further compare our methods with an oracle method described below. Consider the rth fold in
Algorithm 2, where we have trained classifier fBr and the evaluation set Bc

r. We use µ̂(fBr,c, D)
and σ̂2(fBr,c, D) to denote the sample mean and variance of applying Algorithm 1 with dataset D
and fBr,c, where fBr,c is combining c with fBr as in (5). “CV_oracle” means setting

coracle = argmax
c

1

K

K∑
k=1

(
1− µ̂(fBr,c, Dk)− zασ̂(fBr,c, Dk)/

√
|Br ∪Bc

r|
)
,
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where D1, . . . , DK are K independent regeneration of dataset Bc
r with the true distribution.

The results are summarized in Figure 3. We can see that “Oracle” outperforms “CV” and “Naive”,
matching intuition. “CV” outperforms “Naive” and is quite close to the oracle method.
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Figure 3: Violin plots of Floodgate bound based on 1536 experiments. “logistic” and “logistic_int”
denote the classification function.

4 Application in conjoint analysis

4.1 Conjoint analysis

Conjoint analysis (Luce and Tukey 1964) is a survey-based statistical technique, where respondents
are given a number of profiles with different attributes are asked to pick a favourite or rank them. A
popular VIM used by social scientists is the average marginal treatment effect (AMCE), and there
has been work on constructing confidence intervals on the AMCE (Hainmueller et al. 2014; Ono
and Burden 2019). The AMCE, as its name suggests, considers only the marginal effect and may
fail to capture some interactions. Ham et al. (2022) introduced a hypothesis testing procedure for
the null hypothesis Y ⊥⊥ X | Z in the conjoint analysis context, but they did not propose a VIM.
We will bridge this gap by using the ETV as the VIM in conjoint analysis and construct confidence
intervals on it.

4.2 US general election data

In this section, we analyze the election data in Ono and Burden (2019). In the experiment, each
respondent is given two hypothetical political candidate profiles and asked to pick the one that they
prefer. Each data point can thus be written the form

(Y,X0, X1, Z0, Z1, ZR),

where (Xk, Zk) are the attributes of Candidate k with X being the attribute of interest, ZR is the
attribute of the respondent, and Y ∈ {0, 1} is the choice of the respondent. We use Z to denote the

12



collection of (Z1, Z2, ZR). We focus on the presidential election data with n = 7190 observations.
In each observation, there are 13 attributes of two political candidates and 11 attributes of the
respondent, so X0, X1 are scalars, Z0, Z1 are 12-dimensional and ZR is 11-dimensional. Here, each
candidate’s attributes are uniformly and independently randomized, with a few hard constraints; for
example, a candidate with a high-skill profession must have at least two years of college experience.
More details on the data can be found in Appendix D.1.

4.3 Floodgate inference for ETV

We choose X0 and X1 to be the party affiliations of the candidates, which take value from
{Democratic, Republican}. We can see that while one would expect X0,1 to play an important role
in the respondent’s choice Y , its marginal effect would be close to zero (assuming there is no party
affiliation bias in the respondents). To use the AMCE, we would have to re-define X0,1 as whether
that candidate has the same party affiliation as the respondent. The ETV, on the other hand, can
be employed directly. This issue could be more severe for other features that are not as straightfor-
ward to correct. For instance, the original analysis in Ono and Burden (2019) based on the AMCE
dismissed gender as a statistically significant factor for congressional political candidates, while the
analysis Ham et al. (2022) suggested that gender does matter for congressional candidates through
interactions with other factors, including the respondent’s party affiliation.

We have shown in Lemma 1 that in the case of binary response, the upper bound of ETV is 1.
In our specific case, we should expect even lower upper bound.

Suppose we have the following ideal data generating distribution, where

P(candidate party affiliation is independent) = q ∈ [0, 1],

X = (X0, X1) | Z ∼ Unif{(D,D), (D,R), (R,D), (R,R)},

and

Y | X,Z ∼


Bern(0.5), if respondent is independent or two candidates have same party affiliation;
Bern(p), if candidates’ party affiliation differ and candidate 1 is same as respondent;
Bern(1− p), if candidates’ party affiliation differ and candidate 0 is same as respondent.

(9)
In this case, ETV(X,Y, Z) = (1− q)|p− 0.5|. In the election data, q ≈ 0.27, so even if p = 1, which
means a respondent deterministically prefers the candidate from the same party, ETV(X,Y, Z) is
merely around 0.365, far from the general upper bound of 1. Simulations show that we are able to
produce floodgate gate lower bound close to the actual ETV with Algorithm 2. The derivation and
supportive simulations are included in Appendix D.2.

Returning to the real data analysis, we apply Algorithm 2 with k = 10 and J = 100. The
classifier family f is chosen to be the model-based f in equation (5), where the models are HierNet
(Bien et al. 2013), following Ham et al. (2022, Section 3.3). We summarize our analysis in Figure 4.
Each violin plot summaries 40 independent runs. Here, we include both the floodgate lower bound
and the floodgate estimate (that is, manually setting the confidence interval width to zero). We
use the “Naive” and “CV” methods to choose c as in Section 3.2. We can see that activating c in
f boosts performance, and we obtain an ETV estimate of around 0.1 and an ETV lower bound of
around 0.08. The 0.01 estimate translates to around p = 0.63 in model (9). Further details are
deferred to Appendix D.3.
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A Proofs

Proof of Lemma 1. Let X , Y and Z be spaces X, Y and Z live in; let p, q, r and s denote the
densities of L(Z), L(X | Z), L(Y | X,Z) and L(Y | Z). We only prove the case where |Y| < ∞,
while the case |Y| =∞ can be treated similarly.

When |Y| <∞, We scale (1) as

2(1− 1/|Y|) ETV(X,Y, Z) =
∑
y∈Y
|r(y | x, z)− s(y | z)|

∫
x∈X

q(x | z) dx
∫
z∈Z

p(z) dz

=
∑
y∈Y

∫
z∈Z

EX|Z=z [|r(y | X, z)− s(y | z)|] p(z) dz

≤
∑
y∈Y

∫
z∈Z

2s(y | z)(1− s(y | z))p(z) dz (Lemma 2)

= 2

∫
z∈Z

∑
y∈Y

s(y | z)(1− s(y | z))

 p(z) dz

≤ 2

∫
z∈Z

(1− 1/|Y|)p(z) dz = 2(1− 1/|Y|) (Lemma 3).

Here, we are using two simple lemmas of which the proofs are omitted. The upper bound is achieved
when X, conditional on Z, deterministically determines Y and s(y | Z) = 1/|Y| almost surely for
all y.

Lemma 2. If X ∈ [0, 1], E[X] = µ and P(X = µ) = p, then E[|X − µ|] ≤ 2(1− p)µ(1− µ), where
the equality is achieved when X | (X ̸= µ) ∼ Bern(µ).

Lemma 3. Let 0 ≤ ai ≤ 1,
∑n

i=1 ai = 1, then

n∑
i=1

ai(1− ai) ≤ 1− 1/n.

The equality is achieved when ai = 1/n for all i.

Proof of Theorem 1. Define ℓ(f) = Eπ

[
1
aI(E = 1)(1− f(ω)) + 1

1−aI(E = 0)f(ω)
]
. Then

ℓ(f) = Eπ

[
|f(ω)− E|

(
1

a
I(E = 1) +

1

1− a
I(E = 0)

)]
= E[(1− f(ω))/a | E = 1]P(E = 1) + E [f(ω)/(1− a) | E = 0]P(E = 0)

=

∫
(1− f(ω))π1(ω) dω+

∫
f(ω)π0(ω) dω

= 1 +

∫
f(ω)(π0(ω)− π1(ω)) dω .

The minimum of ℓ(f) is attained when

f(ω) = f∗(ω) = I(π0(w) < π1(ω)).

It is not hard to see that 2(1− ℓ(f∗)) = TV(π1, π0).
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Proof of Corollary 1. Let K ∼ Unif{0, 1, . . . , J} independent of (X(0:J), Y, Z). Then we apply
Theorem 1 with (X(K), Y, Z) as ω and I(K = 0) as E to get

2

(
1− E

[
(J + 1)I(E = 1)(1− f(X(K), Y, Z)) +

J + 1

J
I(E = 0)f(X(K), Y, Z)

])
≤

∫
|py|x,z(y|x, z)− py|z(y|z)|px|z(x|z)pz(z) dx dy dz .

Evaluate the left hand side by conditioning on K and we prove the claim.

Proof of Theorem 3. The proof technique of this theorem is a generalization of the strategy used
in the proof of Barber (2020, Lemma 1), which is itself a generalization of the construction used in
the proof of Vovk et al. (2005, Proposition 5.1).

We fix LX in the proof, so we omit the subscript LX of C. We partition the sample space of X
into NK equal-probability Borel sets B1:NK , N > n, which is possible because LX is a continuous
distribution.

We are going to define data generating distributions D0, . . . , D5 for (Xi, Yi)
n
i=1, where D0 is the

distribution we care about, and we construct D1:5 in a way such that TV(Di−1, Di) is small for
i = 1, . . . , 5. Our goal is to show (4) holds for D5, so that it also has to hold for D0. We use L(B)
to denote the distribution L restricted to the set B.

• D0: sample (Xi, Yi)
i.i.d.∼ L = LX ×Unif({1, . . . ,K});

• D1: randomly sample n sets B̃1:n with replacement from B1:NK ; sample Yi
i.i.d.∼ Unif({1, . . . ,K})

and Xi | B̃1:n ∼ LX(B̃i) independently;

• D2: randomly sample n sets B̃1:n without replacement from B1:NK ; sample Yi
i.i.d.∼ Unif({1, . . . ,K})

and Xi | B̃1:n ∼ Lx(B̃i) independently;

• D3: randomly permutate B1:NK to be (B̃k,m)1≤k≤K,1≤m≤N ; sample Yi
i.i.d.∼ Unif({1, . . . ,K}),

sample Ii
i.i.d.∼ Unif({1, . . . , N}) but resample until all the Ii’s are distinct, and then sample

Xi | B̃ ∼ Lx(B̃Yi,Ii) independently;

• D4: randomly permutate B1:NK to be (B̃k,m)1≤k≤K,1≤m≤N ; sample Yi
i.i.d.∼ Unif({1, . . . ,K}),

Ii
i.i.d.∼ Unif(1 : N) and Xi | B̃ ∼ Lx(B̃Yi,Ii) independently;

• D5: randomly permutate B1:NK to be (B̃k,m)1≤k≤K,1≤m≤N ; sample Yi
i.i.d.∼ Unif({1, . . . ,K})

and Xi | Yi, B̃ ∼ LX
(
∪Nm=1B̃Yi,m

)
independently;

By assumption, because D5 is an i.i.d. data generating distribution for (Xi, Yi) conditional on B̃
that respects the marginal distributions of X and Y ,

PD5(C(X1:n, Y1:n) ≥ 1 | B̃) ≥ 1− α,

where 1 is the attained ETV upper bound per the calculation in the proof of Lemma 1. After
marginalizing out B̃, we have PD5(C(X1:n, Y1:n) ≥ 1) ≥ 1− α.

We then notice that D4 and D5 are actually the same data generating distribution, so (4) holds
under D4 as well.
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Now we examine the difference between D3 and D4. The probability of not having to resample
is N !/(Nn(N − n)!), so the total variation distance between D3 and D4 is upper bounded by
ϵ(n,N) = 1−N !/(Nn(N − n)!). Thus,

PD3(C(X1:n, Y1:n) ≥ 1) ≥ 1− α− ε(n,N). (10)

Next, we notice that D2 and D3 are also the same. This is because they both essentially use n
random samples without replacement from B1:NK . Therefore, (10) also holds for D2.

Similarly, we can observe that the total variation distance between D1 and D2 is upper bounded
by one minus the probability of all sampled sets B1:n in D1 are distinct. This gives us the upper
bound of ε(n,NK). As a result, we get

PD1(C(X1:n, Y1:n) ≥ 1) ≥ 1− α− ε(n,N)− ε(n,NK). (11)

Finally, there is no difference between D1 and D0, so (11) also holds for D0. Since ϵ(n,N)→ 0 as
N →∞, the fact that (11) holds for D0 for any N means that (4) holds for D0, as desired.

B ETV and sensitivity analysis

Let B(X,Z,U) be the almost sure supremum of

max

{
p(X | U,Z)

p(X | Z)
,

p(X | Z)

p(X | U,Z)

}
.

Then
p(y | z, x) =

∫
p(y | z, x, u)p(u | z, x) du

=

∫
p(y | z, u)p(x | u, z)p(u | z)

p(x | z)
du

=

∫
p(x | u, z)
p(x | z)︸ ︷︷ ︸
∈[1/B,B]

p(y | z, u)p(u | z)︸ ︷︷ ︸
integrates to p(y | z)

du ∈ [p(y | z)/B,Bp(y | z)].

Then

2(1− 1/|Y|) ETV(X,Y, Z) =

∫
|p(y | x, z)− p(y | z)|

∫
p(x | z) dx

∫
p(z) dz

≤
∫

max(B − 1, 1− 1/B)p(y | z)
∫

p(x | z) dx
∫

p(z) dz

= max(B − 1, 1− 1/B) = B − 1.

Thus, B(X,Z,U) ≥ 1 + 2(1− 1/|Y|) ETV(X,Y, Z).

C Comparison with MACM

Continuing equation (6), the Ri in Zhang and Janson (2020, Algorithm 3) is equivalent to 1 − Li

in Algorithm 1. Note that

Ri =

{
P(Ui < 0 | Zi)− I(Ui < 0), if Y = 1,

P(Ui > 0 | Zi)− I(Ui > 0), if Y = −1.
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and

1− Li = f(Xi, Yi, Zi)−
1

J

J∑
j=1

f(X
(j)
i , Y

(j)
i , Z

(j)
i )

= f(Xi, Yi, Zi)− ÊX|Z=Zi
[f(X,Yi, Zi)]

=

{
I(Ui ≥ 0)− P̂X|Z=Zi

(Ui ≥ 0), if Yi = 1,

I(Ui ≤ 0)− P̂X|Z=Zi
(Ui ≤ 0), if Yi = −1.

D Conjoint analysis further details

D.1 Additional details about data

In this section, we include some additional details on the data used in Section 4. Table 1 includes
attributes of the candidate profiles. Table 2 includes attributes of the respondents.

Attributes Values
Sex Male, Female
Age 36, 44, 52, 60, 68, 76
Race/Ethnicity White, Black, Hispanic, Asian American

Family Single (never married), Single (divorced), Married (no
child), Married (two children)

Experience in public office 12 years, 8 years, 4 years, No experience

Salient personal characteristics Provides strong leadership, Really cares about people like
you, Honest, Knowledgeable, Compassionate, Intelligent

Party affiliation Democrat Party, Republican Party

Policy area of expertise Foreign policy, Public safety (crime), Economic policy,
Health care, Education, Environmental issues

Position on national security
Wants to cut military budget and keep U.S. out of war,
Wants to maintain strong defense and increase U.S. influ-
ence

Position on immigrants
Favors giving citizenship or guest worker status to undoc-
umented immigrants, Opposes giving citizenship or guest
worker status to undocumented immigrants

Position on abortion Abortion is a private matter (pro-choice), Abortion is not
a private matter (pro-life), No opinion (neutral)

Position on government deficit
Wants to reduce the deficit through tax increase, Wants to
reduce the deficit through spending cuts, Does not want
to reduce the deficit now

Favorability rating among public 34%, 43%, 52%, 61%, 70%

Table 1: Types of attributes varied in candidate profiles (Table 1 in Ono and Burden (2019)).

D.2 ETV upper bound

We derive the ETV upper bound in Section 4.3. First, we notice that due to the symmetry of
labeling, P (Y = 0 | Z = z) = P (Y = 1 | Z = z) = 0.5 for any z. If z is such that the respondent’s
party affiliation is independent, then P (Y = 0 | X0 = x0, X

1 = x1, Z = z) = P (Y = 1 | X0 =
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Attributes Values
Sex Male, Female
Education level BA degree, No BA degree
Age group 18-29, 30-50, 51-65, 66 or older
Age Age in years
Social class Lower class, Middle class, Upper class
Region South, Nonsouth
Race/Ethnicity White, Black, Hispanic, Other
Partisanship Democrat Party, Republican Party, Independent
Thought on Hillary Clinton Dislike, Like, Neutral

Interest in politics Not at all interested, Not very interested, Somewhat in-
terested, Very interested

Political ideology Conservative or liberal levels (7 levels)

Table 2: Types of attributes recorded in respondents.

x0, X
1 = x1, Z = z) = 0.5 for any (x0, x1); otherwise, P (Y = 0 | X0 = x0, X

1 = x1, Z = z) takes
value 0.5, 0.5, p, 1− p for (x0, x1) ∈ {(D,D), (D,R), (R,D), (R,R)}. Then the ETV is

ETV = q × 0 + (1− q)
∑

y∈{0,1}

∑
x0∈{R,D}

∑
x1∈{R,D}

1

4
|P (Y = y | X0 = x0, X

1 = x1, Z = z)− P (Y = y | Z = z)|

= (1− q)
∑

y∈{0,1}

1

4
(0 + 0 + |p− 0.5|+ |1− p− 0.5|)

= (1− q)× 2× 1

4
× |2p− 1| = (1− q)|p− 0.5|.

To test how well our algorithm does in this ideal setting, We regenerate synthetic Y according
to (9) and apply Algorithm 2. In Figure 5, we plot the average floodgate lower bound from 40
independent experiments (but they share the same synthetic response) and the theoretical upper
bound (1− q)|p− 0.5|. We can see that in moderate to high signal regimes, the floodgate bound is
close to the theoretical upper bound.
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Figure 5: Conjoint analysis with synthetic responses.

D.3 Analsyis details

In the experiments in Section 4.3, f is chosen to be

f(x, y, z; pθ1 , pθ2 , c) =


1, p̂i > 0.5 + c,

0, p̂i < 0.5− c

0.5, |p̂i − 0.5| ≤ c,

where pθ1(y | x, z) is a HierNet model with a fixed penalty parameter, where interactions between
politician’s gender and party affliation are added as a feature, and pθ2(y | z) is a HierNet model
with the same penalty parameter. In the method “CV” to choose c, we further partition the training
data Br into m = 10 folds Cc

r1, . . . , C
c
rm. We then calculate the cross-validated loss

lossr(c) =
1

m

m∑
j=1

loss of f(pθ̂1(Crj)
, pθ̂2(Crj)

, c) on Br \ Crj ,

where θ̂(C) means θ̂ estimated on dataset C, choose the cr that minimizes lossr(c), and let

fBr = f(pθ̂1(Br)
, pθ̂2(Br)

, cr).
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